TODORCEVIC’S AXIOM K; AND LADDER SYSTEM
COLORINGS

JUSTIN TATCH MOORE AND TERUYUKI YORIOKA

In this article, it is proved that if every c.c.c. partition K C [w;]? has an
uncountable homogeneous set, then every ladder system coloring on w; can be
o-uniformized. This improves a previous result of the second author [14].

1. INTRODUCTION

In [11], Todoréevié and Velickovié showed that MAy, is equivalent to a Ramsey-
theoretic assertion about partial orders. This led to the study of related but a
priori weaker Ramsey theoretic assertions IC,,. Recall that if K C [w;]™, then a
set H C wy is K-homogeneous if [H]™ C K. The axiom K, is the assertion that
if K C [wy]™, then either there is an uncountable K-homogenous set or else there
is an uncountable collection of finite K-homogenous sets, the union of any two of
which is not K-homogeneous.*!

All of these axioms are consequences of MAy, and for all n > 2, K, 41 implies
K,. It is a longstanding open problem whether any of these implications can be
reversed. Many of the consequences of MAy, are known to be consequences of
K., for some n [4], [5], [7, §7] [8] [11]. The purpose of this report is to establish
the uniformization property of ladder system colorings using the weakest of these
axioms, K.

Recall that a ladder system on E C w; N Lim is a sequence C = (Co:a€ E)
such that, for each a € E, C,, is an unbounded subset of o and the order type of
Cy is w. A coloring of a ladder system (C,, : o« € F) is a sequence fz (fa € E)
such that, for each o € F, f,, is a function from C\, into w.

If f = (fa: o € E) is a coloring of a ladder system C, a function ¢ from wy into
w uniformizes fif for every a € E, f, and ¢ | C, are almost equal — that is, the
set

{€ € Ca: fal8) # ©(§)}

is finite.

For a subset S of the power set of wy N Lim, U(S) is the assertion that, for
any coloring (f, : @ € wy N Lim) of a ladder system (C,, : @ € wy N Lim), there exist
S € S and a function from w; into w which uniformizes the restricted coloring
(fa:aeS8). If § = {wy NLim}, we will write U for U(S).

The first author is supported by US NSF grant DMS-1854367. The second author is supported
by Grant-in-Aid for Scientific Research (C) 18K03393, Japan Society for the Promotion of Science.

*IThe notation K, is sometimes used to denote the formally stronger hypothesis that every
c.c.c. partial order has Property K,. While it is asserted in [11] that this is equivalent to the
above assertion about partitions, it is an open problem whether this equivalence holds in ZFC (if
the countable chain condition is productive, they are equivalent). When there is a need to draw
a distinction, the notation K/, is sometimes used for the weaker statement about partitions, as it
is in [12, 13, 14].
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Finally, o-U is the assertion that, for any coloring (f, : @ € wy N Lim) of a ladder
system (Cy, : o € wy N Lim), there exists |J Jn = w1 N Lim such that, for each
n €w, (fo:a € J,) can be uniformized.

In [1], Devlin and Shelah introduced U, and proved it implies both that 2% = 281
and that there is a non-free Whitehaed group of cardinality X;. Moreover, Eklof
and Shelah showed that the existence of a non-free Whitehead group of cardinality
N; is equivalent to the existence of a ladder system C = (C¢ : € € E) indexed by

new

a stationary set £ C w; such that every coloring of C' can be uniformized [2, Ch.
XIIT] (see [3, §6]). In [14], it is proved that Ky implies U(club), and K3 implies
U(stat).

2. Ko IMPLIES o-U

We will now prove that Ko implies o-U. The proof is closely related to
Todorcevié’s proof that Ky implies that all Aronszajn trees are special [8]. Fix
a ladder system = (Cy : v € wy NLim) for the remainder of the proof. Fix a
sequence € = (e, : @ € wy) such that:

e for each a € wy, €4 : @ — w is an injective function and
e for each «, f € wy with a < 3, the set

{€€eaes(§) #eald)}
is finite.
Such a sequence can be defined explicitly from C — see [6, 9, 10]. Let r, € “2

denote the characteristic function of the range of e,. We notice that, for any
o, f € wy, if a+w < B, then A(ry, rg) < w. For each 7, s € “2, define

A(r,s) :=min{n € w: r(n) = s(n)}.

For each 6 € w; NLim and 8 € wy with § < 3, define I(§, 3) to be the open
interval (0’,0) where ¢’ is the least ordinal below ¢ such that eg(§) > eg(d) for
every ¢ in the open interval (¢',4).

Now suppose that f = (f4 | @ € wy N Lim) is a coloring of C'. Define KyC [w1]?
to consist of all {a, 8} such that A(ry, r3) < w, and, whenever v € o and § € B are
limit ordinals and e, (v) = eg(d) < A(rq,rg), then (fy [ I(v, ) U (fs5 | 1(5,8)) is

a function. We are finished once we prove the following claims.

Proposition 2.1. If there is an uncountable H C wy such that [H]? C Kf7 then f
has a o-uniformization.

Proof. Suppose that H is an uncountable K-homogeneous subset of w;. For each
s € <“2and n < |s|, define J ,, to be the set of limit ordinals ¢ in w; such that there
exists § € H such that s C rg and eg(d) = n. Observe that [ c<uy U, <5 Jsin
is all limit ordinals in w;. For each s € <¥2 and n < [s], let s, be the union
of functions of the form f5 [ I(d, ) such that § € H, 6 € N Lim, s C rg, and

ep(d) = n. Since H is homogeneous, ¢; , is a function. Clearly ¢, ,, uniformizes f
on Jg p. O

Proposition 2.2. For every f_: Kf s c.c.c..

Proof. Let X be an uncountable set of finite K fihomogeneous sets. By performing
a A-system argument and removing the root, we may assume that X consists of
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pairwise disjoint sets of uniform cardinality n. If x € X and ¢ < |z|, let (¢) denote
the ith least element of .

Take a countable elementary submodel M of H(2N1+) such that é, er,X eM.
Define € := wy; N M. Using the pigeonhole principle, find a # o' € X \ M such that:
A(ra(iy Ta(y)) < | whenever 4,5 < n,

A(rq(),Tar(s)) > | whenever i < n,

€a(i)(€) = ear(iy(€) < I whenever i < n, and

if i < mn, v <a(i),y < d(@)and e,;)(7) = ear@)(V) < €aq)(€), then
fyle=fyle

Fix an m such that A(ry,74(;)) < m for all i <n. Let & < e be such that for all
i < n and limit ordinals v < a(7):

e if v < e and ey () < m, then v < & and
e if v > ¢ and e, (7) < m, then C, Ne <&

Let N be a countable elementary submodel of H(Ry) with N € M and C.e,7, X,z €
N. By elementarity of N, there is a b € X N N such that for all i < n:

o A(rar(iy, Toiy) = m,

o if v < e and eq (5 (7) < m, then eq ) () = ep)(7)s

o if e <y < (i), d <b(i), and eqr(3)(7) = epiy(d) < m, then f, [E= f5 [ &
e if 0 < b(i) with ep(;y(0) = eqr(;)(€), then C. N N is an initial part of Cs and

fe I N is a restriction of fs.
Notice that this implies in particular that whenever i < n:

(1) [ < A(ra(i)arb(i)) <m,
(2) if v < a(i), 6 < b(i) and eq() (V) = ep)(0) < eq()(€), fy U fs is a function.

We claim that a U b is K]rhomogeneous. Toward this end, suppose that i,j < n,

v < a(i), § <b(j) and eq)(7) = ep(j)(0) < A(Taiy: To(s))-

If i # j, then by (1), A(7ag), 7o) = A(Ta(i), Ta)) < I. In particular, eqe;(7) =
ep(j)(0) < I Since r4(;) and 735y are the characteristic function of the ranges of
ea(j) and ey, respectively, and A(rq;),7p(;)) > I, we also have that there is a
7" < a(j) such that e,y (7") = ey;)(d). By our choices of & and b,

f,y/ [Ezf,y/ [5:](‘5 [E_
Since [a]? C K 7> We know that

(fy 1 1(v,a(@) U (fy [ 1(Y;a(4)))

is a function. Since C, N C; is contained in &, we have that C, N C5 = C, N Cy.
Since f,yr [ C’Y NCs=fs 1 C’Y N Cs,

(fy T (v, a(i)) U (fs [ 1(6,6(5)))

is a function. This concludes the case i # j.
Next suppose that i = j. If e,y (7) = ep()(0) < eqi)(€), then by our observation
(2), f4 U fs is a function and in particular

fy Ty, a(i) U f5 11(3,b(i))
is a function. The remaining possibility to consider is that

ea(i)(€) < ea(i)(7) = ep(i)(0) < AlTagy, o)) < m.
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This implies that either v = § < £ or else € < «. In the former case, f, = f5. In the
later case, e < I(v,a(i)) and hence I(7,a(?)) is disjoint from I(d,b(i)). In either
case

fW rI(’\/va(i)) Uf5 rI((S»b(l))

is a function. O
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