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1 Introduction

In this paper, based on a recent work [4], we present our study on the existence and
linear stability of one-peak stationary solutions for the following Schnakenberg model
with heterogeneity:

)
1 c 2
evy — Dvge = 5 — Sg(x)uv, x € (—1,1), t >0, (1)
(

where ¢ is a positive constant and g(z) is a positive function on the interval (—1,1).
Moreover, u(z,t) and v(z,t) represent the density of two chemical substance at t > 0
and z € (—1,1), and € > 0 and D > 0 are diffusion constants of v and v, respec-
tively. This model, which describes an autocatalytic chemical reaction, was proposed
by Schnakenberg [6], and is well-known as a model in pattern formation. g(x) repre-
sent the reaction speed of the chemical reaction at z € (—1,1) and may vary on the
location z, for example by the effect of temperature. Here, we note that the standard
Schnakenberg model [6] is the case g(z) = 1.

There are huge works on the study of the Schnakenberg model (see e.g. [8] and the
reference therein.) Since we are interested in the study of spiky solutions of (1), we
first mention the work of ITron, Wei, and Winter [2] which studied the non-heterogeneity
case, i.e., g(x) = 1. They gave the results of the existence and stability of multi-peak
symmetric solutions in details. In particular, it was shown that a one-peak solution,
which concentrate at x = 0, is stable for any D < 4o00. The model, which has a
heterogeneity term, was studied in [5, 3, 4, 1]. We also mention the related work
[7] on N-spike cluster solutions for the one-dimensional Gierer-Meinhardt system with
heterogeneity.



2 Main results

We need several preliminaries to explain our main results in details. First, let w be
the unique solution of the following problem:

w" —w+w?=0, yeR,
{ (2)

w > O7 ’w(O) = IMmaxgr w, hm‘y|_,oo w(y) =0.

For the unique solution w(y) above, the following facts is known:

3 Y\ 2
= —( cosh —) *dy = 6.
w(y) 5 (c sh3) / wdy =6

Let x be a cut-off function satisfying the following properties:

xeCE®, 0y <L x@=1(l <) x@)=0(lel>35) @)

Next, we introduce the following function spaces:
HY(—a,a) :={u € H*(—a,a) | v'(+a) =0}, a>0. (4)

Let I := (—1,1) and I. := (—& ', !) for £ > 0. For a function u : I — R, we define
the following rescaling notation: u(y) := u(ey) for € I..

Let us explain our main results. For ¢t € (—1,1), we define the notations F'(t) and
&(t) as follows:
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For the existence, we assume the following condition:
(A): Assume that g € C?(I) and g(x) > 0. Moreover, there exists a point ¢y € I such
that

~1. (5)

F'(ty) =0, F"(ty) #0. (6)
We state the main result on the existence of a one-peak solution.

Theorem 1 Assume the assumption (A). Then, for e > 0 sufficiently small, (1) ad-
mits a one-peak stationary solution (u.(z),v.(r)) € H% (1) x H% (1) which satisfies the
following:1

(1) u.(z) concentrates at some point x =t. € B(e¥* ty) :={t € I | |t — to| < £3/4}.
(2) u.(x) takes the following asymptotic form:

() = We () + bey. (1), (7)

Wey, (x) 1= )w(‘r — ta)x(lﬂ — ta), ro 1= % min{ty + 1,1 —to}, (8)



and ¢. 4 (z) is a remainder term, namely ¢.,. € H%(I) such that
|02t 21y < Coe (9)
holds for some constant Cy > 0 independent of € > 0.

(3) ve(x) satisfies
ve(t:) = &(t.) + O(e) as e — 0. (10)

Next, we study the linear stability of the solution (u.,v.) given in Theorem 1. We
linearize the system (1) at (u.,v.) and obtain the following eigenvalue problem:

20l — e + 2g(z)ucv.p- + g(@)uitye = Ao, x € (—1,1),
Dyl — 2g(z)ucvepe — Sg(a)uey = eXthe,  z€(—1,1), (11)

pe(£l) = ¢i(£1) = 0,

where ). is an eigenvalue and (., ¢.) # (0,0) is an eigenfunction. Now, we state the
main result on the stability.

Theorem 2 Let ¢ > 0 be sufficiently small. We assume that (u.,v.) is the solution
giwen in Theorem 1. Then, we have the following result for large eigenvalues, namely

)\5 — )\0 7é 0:
(1) We have Re(\.) < 0. Thus, (ue,v.) is stable for any D < 4o0.
For small eigenvalues, namely A\. — 0, we have the following results:

(2) It holds that ‘
2g<t€> fR wsdy F//
3 [ (w)?dy

(3) If F"(ty) > 0, then (uc,v.) is stable. If F"(ty) < 0, then (ue,v.) is unstable.

Ae = —¢ (to) + o(e?) as € — 0. (12)

Remark 1 We note that we can actually show that eigenvalues A, satisfying Re(\;) >
—471 are bounded. So we may assume that \. has a limit, up to a subsequence.

For Theorem 1, we construct one-peak solutions which concentrate at ¢ty € (—1,1)
given by (A) by using the Liapunov-Schmidt reduction method. In particular, concen-
tration points ty and amplitudes of one-peak solutions are determined by the interaction
of the heterogeneity with the geometry of the domain, represented by Neumann Green
function. For Theorem 2, we consider two cases: (i) The large eigenvalue case, namely
Ae = Ao # 0. (ii) The small eigenvalue case, namely A. — 0. For the large eigenvalue,
by using the lemma of Wei and Winter ([2, 8]) for non-local eigenvalue problems, we
can show Re(\g) < 0 for any D < +oo. Thus, for sufficiently small ¢ > 0, the large
eigenvalue A, is a stable eigenvalue. For the small eigenvalue, by using several technical
lemma, we show that the leading term of A, is given by (12).
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3 Remark on the generalized system

Finally, we refer to one-peak solutions for the generalized system. We can generalize
the system (1), for example to the following system:

U — Uy = —u + gy (x)u?v, z € (—1,1), t >0,
3 — Sgo(x)uP, z € (—1,1), t>0, (13)
Uy (E1,t) = v, (£1,¢) =0,

evy — Dug, =

where g;(z) and gy(x), respectively, are positive and C? functions. By using the same
way of [4], under the suitable assumption, we can construct one-peak solutions and
obtain its stability results. For the system above, the assumption (A) become

(A): There exists a point tg € I such that

t 91(t)ga(t) '

F(t)) =0, F'(t F(t) := - 14
( 0) 0, ( 0) % 0, ( ) 12¢D (]l(t)3 ( )

The amplitudes £(t) of the solutions are given by
bega(D) _ 4 (15)

g1(t)%E(t)

Moreover, the stability of the solution, which is constructed under the assumption (A’),
is decided by the sign of F'(t). For the analysis in details, see [4]. In particular, we can
conclude that the heterogeneity g1 (x) of the equation of u, namely the first equation of
(13), has a stronger effect than go(z) on the spike position and the stability.
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