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Abstract

We study the boundary value problem for the stationary Navier—Stokes system
in two dimensional exterior domains. In particular, we discuss the history of the
problem, its linear analogs (the Stokes paradox and Oseen system), some recent
results and open questions.

1 Introduction

The stationary motions of an infinite cylinder of simple connected section ' C R? in a
viscous fluid F are governed by the Navier-Stokes system®

vAu —div(u®u) —Vp=0 in Q,
divu =0 1in Q, (1)
u=a on 0f),
where o
Q=R*\,

u:Q — R% p:Q — R are the unknown velocity and pressure field and v > 0 is the
assigned kinematical viscosity.
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To (1) we append the condition at infinity

lim w(r) = u, (2)
r—+00
with ug assigned constant vector.
The determination of a solution to system (1)—(2) is a far from trivial problem and
has attracted the attention of eminent mathematicians.
In this paper we aims at highlight the most important steps in the study of problem
(1)—(2), to give the most recent results and to point out the main open problems.

Acknowledgment. The work of M.K. is supported by Mathematical Center in Akadem-
gorodok, the agreement with Ministry of Science and High Education of the Russian
Federation number 075-15-2019-1613.

2 The Stokes equations

Our history starts from the first attempt of the great scientist G.G. Stokes to determine
the motion of a rigid body through a viscous liquid.

When the inertial effects div (w ® w) in (1); are negligible, one is allowed to linearize
(1); around the solution (0, ¢), to get the Stokes system

vAu —Vp=0 1in ,

divu =0 1in €,
u=a on I, (3)
lim wu(z) = up.

r—-+o00

The first rigorous study of existence of a solution to (3) in the exterior of a disk, was
performed by G.G. Stokes in 1851 [36], in order to determine the resistence g on the
obstacle due to a rigid motion of a right circular cylinder in F. While for a = w x &, he

found the solution "

u(];):wxW7 P = Do,

with py arbitrary constant, unlike to the analogous three-dimensional problem of a trans-
lational motion of a ball of radius R, where he found the famous formula @ = 6vmug, his
method, based on a suitable use of the stream function, led him to the conclusion that
translational motions of a cylinder in F were impossible: it appears that the supposition
of steady motion is inadmissible ([36], p. 63). The same Stokes gave the following ex-
planation: The pressure of the cylinder on the fluid continuously tends to increase the
quantity of fluid which it carries with it, while the friction of the fluid at a distance from
the cylinder continually tends to diminish it. In the case of a sphere, these two causes
eventually counteract each other, and the motion becomes uniform. But in the case of a
cylinder, the increase in the quantity of the fluid carried continually gains on the decrease
due to the friction of the surrounding fluid, and the quantity carried increases indefinitely
as the cylinder moves on ([36], p. 65).



This impossibility of a slow steady—state translational motion of a cylinder in a viscous
fluid becomes known, with a bit of emphasis (see Remark 1), as Stokes paradoz?.

In 1896 the Nobel price H. Lorentz found the fundamental solution to the equations
(3)1,2:

1 0ij (zi — i) — v;)
Ui (z —y) = log —2— + el
=9 =G lz —y |z — y[?
Qi —y) = =Y (Q
v
Y 27T|x—y|2’

and in 1930, F.K.G. Odqvist [26] by a suitable use of the Green identities introduced the
simple and double layer hydrodynamical potentials:

vi[Y](x) :/uij(w—é)%(é)dffo

o9 5
1) = /WZ(T — O)YiC)doy,
wlpl (@) = = / (= Qllr =) 'f;(f)]g Hgf ~ - elCldsc
— G)ni (Qwi(Q)ds¢ (6)
8 / |x — §|2 )

of densities ¥ and ¢, where n is the unit outward (with respect to Q) normal to 9.
They are analytic solutions to (3);2 in R? \ Q. He observed that the singulary in the
integral of (6); is the same as the Newtonian double layer potential:

ulel(a) = 5 [ )
i) ‘

Therefore, at least for regular €2 (say Liapounov), one can apply the Fredholm theory to
the integral vector equation

e 2 [E-0lE=0 nOllE = O pOlds,
ae) =%+ | el ,

(8)

o0

as for (7) to the integral equation

N 2m |z —CJ?
B1)

The kernel of (8) is the space of rigid motions of R? so that the homogeneous adjoint
equation to (8) has three linearly independent solutions that are the densities {9, }i—1 .23,

2In his famous monograph [20] H. Lamb did not use this locution to denote the phenomenon found
by Stokes.



of the single layer potentials giving the rigid motions of €. Odqvist concluded that a
solution to (3); 2,3 in the form of a potential of double layer, and so vanishing at infinity,
exists if only if @ is orthogonal to every 4p,. On the other hand, translational motions v[,]
grow logaritmically at infinity and this, according to Odqvist, mathematically explains
the Stokes paradox ([26], p. 356-357)%.

Clearly, Odqvist’s conclusions hold in the class of solutions expressed by layer po-
tentials. On the other hand, a standard argument shows that his conclusions can be
extended to every smooth solution. Indeed, any regular solution (u = o(r),p = o(1)) to
(3)1.2 behaves at infinity according to

i) = s + sy (1) / s, ) + 04(2),

o0 (10)

pla) = mi(o) [ () + 002),
o0
where
o 1k o ok -
Vi =O(r ), Vil =0(r ), vk_z...v,
—times
and

si(u,p) = —pn; + p(diuj + djui)n;
it the traction of 0€2. If (3) had a solution, then (10) should imply that

/s(u,p) =0, (11)

o0N

and by an integration by parts, one should have

[1val = [@—u)- st (12)

o0
Hence it follows that if @ = 0, then (3) is solvable only for uy = 0 (Stokes’ paradox).

To better understand Stokes paradox from a mathematical point of view, by allowing
also less regular domains and boundary data, one can express the solution to (3) by a
simple layer potential as showed in [30].

Let us consider the simple layer potential (5) with density 1 € W~1/22(99) (say),
where by abuse of notation the integral could means the value of the functional ¥ at U.
With such a density, (5) is a variational solution to (3); 2 in R*\dS2 and it is straightforward
to see that v[tp] € W2 (R?). Then

loc
S € W22(0Q) — S| = tr jsqu[yp] € W22(09) (13)

is a well defined, self-adjoint, linear and continuous operator, s(v[tp], Plyp])* € W=1/22(90Q)
and s(v[¢], P[p])" — s(v[3], P[¢p])” = 9. Set

M = {¢ : S[Y] = constant}, My = {1# : S[Y] = 0}. (14)

3For n = 3 Odqvist’s approach is explained in detail in Ch. 3 of [19].
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Clearly,
dim 9 = 2

and

Wy, 1, ¢ basis of M —> ¥y, | b, p basis of R% (15)
() U L)

By using these classical properties, and standard a priori estimates on variational solutions
to (3)1.2, one easily show that S is Fredholm with index zero and

KernS = spn{n} N M. (16)
With this information available, it is routine to get

Proposition 1. Let Q be Lipschitz. If a € WY%2(09), then there is v € W~1/22(90)
such that the pair
u(r) = v[Y(z) +o(z) + K,
p(z) = Plp)(x),

is a variational solution to (3)123, where

(1) = -0 /
o\r) = ———— a'n
27T|5'3|2 a0

(17)

and K is defined by
/(a—n)-d/:o, Vap' € M.
o0

It is unique in the class of variational solutions {(w,p) : w = o(r)} modulo a pair in the
two dimensional linear space {(v[¢'] — S[¢'], P[y']), ¥' € M}.

Looking for a solution to (3); 23 which converges at infinity, from (15) and (17) it
follows that -
u(z) = v[9](z) + o (z) + uo, a8)
p(x) = Plp)(x).
with
b, wem: [d-o
o0

uy = k — S,

(19)

takes the value value @ on the boundary and wv[t] tends to zero at infinity. Therefore, it
holds

Theorem 1. If a € WY/22(9Q)), then (3); 2,3 has a solution which converges uniformly at
infinity. Moreover, (3) has a solution if and only if

/(a —ug) -’ =0, V' eM. (20)

o0N



Remark 1 - In general, the natural behavior at infinity of a solution to an elliptic differen-
tial system is that exhibited by the fundamental solution and, in this sense, Proposition 1
does not depart from this “principle”. System (3) becomes then ovedetermined and, as a
consequence, its solvability requires suitable compatibility conditions, like (20). The real
paradox should be then, not the the lack of solutions to System (3), but its solvability! <

Remark 2 - By classical results of R.R. Coifman, A. McIntosh and Y. Meyer [3], the
restriction of (13) to L*(0)

S:ap € LX) — Syl € WH2(99), (21)

is continuous. Therefore, using a procedure by J. Necas based on Rellich’s inequalities
[25] (see also [5], [14], [37]), one shows that (21) is Fredholm with index zero, as well as
its adjoint [30]
S p e WH00) — Shp] € L*(99). (22)
Moreover, if  and a are more regular, then so does the solution (17). In particular, [4],
[24], [35]
(i) by well—known stability results (see, e.g., [13]), there is € > 0 depending on 02,
such that
S € WH1(0Q) — S[p] € WHH1(9Q), (23)
is Fredholm with index zero for all s € [-1,0] and ¢ € (2 —¢,2 + ¢€):
(i1 ) there is g € [0,1]) such that if @ € CO#(9Q), u € [0, j1g), then u € C*(Q);

(¢i7) If Q is of class C*, then in (z), (i7) we can take g € (1,400) and pug = 1.

For more regular domains (of class C%*, say) we quote the classical monograph of C.
Miranda [23]. o

Remark 3 - The results quikly recalled above seem to be quite complete from a math-
ematical point of view. Nevertheless, there is a point which deserves attention. To be
not merely formal, the compatibility condition (20) requires an analytic expression of the
fields in 99t. In our opinion this is a very interesting problem in both pure and applied
mathematics. As far as we know, it is has been solved only the ellipse. Indeed, if f(§) =1
is its equation, then (see Sect. 4 of [22] for a simple proof), then

— e_}
Spn{|Vf|’ Mi

Hence, if €2 is an ellipse, than (3) has a solution if and only if

a — Uy
— =0.
/ IV
o

In particular, if € is a disk and uy = 0, then (3) has a solution if and only if

/a:0 (24)

o0



and we rediscover Stokes” paradox. o

Remark 4 - Theorem 1 and the results in remark 2 can be stated also for the more general
exterior domain

Q=R>\J%, (25)

where €; are N simply connected bounded domains such that Q; N ﬁj =@, i # j. The
only difference is that now the field o from Proposition 1 writes

3 The Oseen equations

At the beginning of the twentieth century the belief that Stokes’ approximation (3); o was
valid not far from the obstacle and that in order to determine the slow motion of a cylinder
in a viscous fluid (and so to find a definite value of the resistance) the effects of inertia,
expressed by the non-linear term div (u ® w), had to be taken into account, although
without renouncing the benefits of linearity of the system of differential equations (see
[20] Sections 340-343) . To take then partially into account the inertial effects, in 1910
C.W. Oseen [27] proposed to linearize the Navier Stokes equations around the solution
(ug, ¢) and to replace system (3) by

vAu —ug-Vu—Vp=0 in
divu=0 1in (,

u=a on 0f), (26)

A ) =0

today known as Oseen equations. He was able to find a solution to (26) for the disk and
to determine the resistance (see [20] Section 343). In 1927 [28] the same Oseen found the
fundamental solution to (26)12 (&;(x — y), w;(x — y)). It enjoy the following properties
(see [7], Ch. VII)

(1) &ij(x —y) =Wij(z —y) +o(1) as |ugllr —y[ = 0;
(ii) Vi€ (t) = O([t|~*F+1/2) Yk € Ny;
(7) implies that the trace operator

S, : W=Y22(9Q) — WH22(9Q), (27)



associated with the Oseen simple layer potential

vuil#b) () = / £ — €5 (€)dse.

Plp)(z) = / iz — £) - u(€)dse,

o0N

is Fredholm with index zero and [32]
KernS, = Kern S, = spn{n}.
Hence, taking also into account Remark 2, it follows

Proposition 2. Let Q be Lipschitz. There is € > 0 such that if a € W1(0Q)), s € [0, 1],
g€ (2—¢€,2+¢€), then (26) has a solution expressed by

(1) = vo[h](x) + o (),

poli) = PI(2) — oo )
for some b € WH4(9Q). If Q is of class C*, we can take q € (1,+00).
4 Navier Stokes equations
From here and henceforth let 2 be an exterior domain in R?, i.e.,
N
Q=R>\J%, (30)
i=1

where €2; are N pairwise disjoint bounded domains with connected Lipschitz boundaries
The first existence theorem for equations (1) was established by J. Leray in his cele-
brated PhD thesis [21] (1933). He consider the sequence of boundary value problems

vAuy — div (ur @ ur) — Vpr =0 in Q,
divuk =0 in Qk, (31)
up, =a on Jf),

up = ug on JCY,

for Q and a sufficiently regular, where Q;, = QN C), with Cp = {x € R? : |2| < Ry},
Ry < Ryy1 — 4o00. Under the condition

/a-nzo, i=1,...,N, (32)

Iy



using Odqvist ’s results [26] and a fixed point argument, he proved that (31) has a regular
solution (wy,pr) that satisfies the estimates

/|V'u,k|2 <ec, (33)
0

for some positive constant ¢ independent of k. Thanks to (33), Leray was able to show that
the sequence (uy, py) converges to a regular solution (u,p) to (1), having finite Dirichlet
integral

/ Val <. (34)
Q

and known as Leray solution. Today, a solution to the Navier Stokes equations (1) sat-
isfying (34) in a neighborhood of the infinity is called D-solution. The Leray argument
can be easily repeated to prove existence of variational solutions (see [19], Ch. 5).

Let us observe that the only hypothesis required by Leray consists in excluding by (32)
the presence of source or sink in the fluid. This assumption has been partially removed
in [31] (2009), and using also the results stated in Remark 2, one can claim the following
Theorem.

Theorem 2. If 9€) is Lipschitz and a € L?(0N) satisfies

N
/CL'TL

Z )

i=1

< 271y, (35)

then (1) has a D—solution, which is analytic in §).

Despite this great achievement, Leary left open a problem of undoubted interest. Since
every uy, takes the value ug on dCY%, one should expect that the limit w of u; “remember”
(at least in weak form) the value at infinity, as happens in the three dimensional case.
But the only information available on the behavior at infinity of w is given by (34), and
it is well-known that a function having finite Dirichlet integral in €2 can grows at infinity
as log”r for w < 1/2. Nevertheless, under suitable assumptions of symmetry (say) on
data and solutions, on can say that the Leray solution vanishes in a weak sense at infinity.
Assuming that 2 is polar symmetric with respect to o, i.e., © € Q@ = —xr € Q and
a(§) = —a(=¢€), for every € € 952, one shows that the Leray procedure yields a polar
symmetric solution u(z) = —u(—x), for every z € Q*, so that for large R

2m

/ w(R,0)d0 = 0. (36)

0

By the trace theorem, (36) and Poincaré’s inequality

2T
/|u(R,8)|2d9§% / u? + / Vul2 < / Vul?
0

Car\CRr Car\CR Car\CR

4In this case we have to set ug = 0 on 9Cy,.



Hence it follows

2m
. 2 o
Rl—1>r-|l—1<>o/ lu(R,0)|°dd = 0. (37)
0
In 1961 H. Fujita [12] and, independently Vorovich & Yudovich [38], using a method
different from that of Leray, based on a Galerkin scheme®, were able to prove existence of
a D-solution to (1).

A first important, deep result (and, as far as we know, unique until today) in the
existence problem for system (1)—(2) was given by R. Finn and D.R. Smith in 1967 [6].
By a technique based on a fixed point argument and on the existence of solutions to Oseen
system (26), they proved that if Q and a are sufficiently regular and

la — uo||c2(00) = o(Alog A1) as A= |u_0 — 0,
14

then (1)—(2) has a regular D—solution.

It is clear that, at least for small data and ug # 0, Finn and Smith’s theorem ruled
out Stokes” paradox from the nonlinear theory of viscous fluid.

Finn and Smith results were rediscovered by G.P. Galdi [8] (see also [34]) by a different
method, under less restrictive assumptions on € and a (see also [7], Ch. XII).

Due to the lack of a uniqueness theorem the three solutions we discussed above are
not comparable. Therefore, results holding for every D—solution are of great interest.

5 Asymptotic behavior of D solutions

The problem of the asymptotic behavior at infinity of Leray’s solution (uy, px) was tacked
by D. Gilbarg & H. Weinberger in 1974 [10]. They proved that wuy is bounded, there are
a scalar pg and a constant vector w., such that

lim pi(z) = po (38)
r—+00
(one can choose, say, po = 0),
2
lim /|uk(r, 0) — un|*df = 0, (39)
r—+00
0
and 3/
W(l’) - O(T - )74 (40)
Vu(z) = o(r—3/*logr),
where

W = 82“1 — 61U2

°This technique is clearly described in [7], Ch IX.
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is the vorticity. Two years later the same authors [11] showed any D-solution (u,p)
satisfies (38) and

u(z) = o(log"/?7),
w(z) = olr¥/ 1og!/* 1),
Vau(z) = o(r=3/*1og”® r),
Vw € L*(Q).
If u is bounded, then it satisfies the same properties as the Leray solution and if u., = 0,

then
u(z) = 0 uniformly as |z| — oo. (41)

Moreover, if u,, # 0, then there exists a sequence of radii p, € (27,2""), n > ny, such
that

sup |w(pn,0) — | = 0 as n — 00. (42)
0€[0,27]

Some years later C.J. Amick [1] proved that a D—solution to the problem of a flow
around an obstacle (@ = 0) has the following asymptotic properties:

(i) w is bounded and, as a consequence, it satisfies (39), (40);

(ii) the total head pressure ® = p + |u|? and the absolute value of the velocity |ul
have the uniform limit at infinity, i.e.,

lu(r, 0)] = |uo| as r — 00, (43)

where u., is the constant vector from the condition (39);
(iii) if 0N is symmetric with respect to the z;—axis (say), and (u, p) is symmetri, i.e. u;
is even and uy is odd with repect to x5, then u converges uniformly at infinity to a

constant vector pe;, for some scalar p. Moreover, the Leary procedure yields to a
nontrivial solution.

In [2] the same author proved that if ;1 # 0, then the solution in (iii) behaves at infinity as
that of the linear Oseen equation. These result was extended by L.I. Sazonov [33] to an

arbitrary D—solution converging uniformly at large distance to a nonzero constant vector
(see also [9] and Ch. XII of [7]).

6 Recent results and open problems

In recent papers [15], [16], [17], [18], [29] we were able to give positive answers to some
problems outlined above for general exterior domains defined by (25). In particular, the
following theorems has been established.

Theorem 3. [29] — Let Q be a Lipschitz exterior domain of R? symmetric with respect
to the coordinate axes and let a = (ay,ay) € WY22(0Q). If

0&(51@2) = (11(517 —52), 02(51:52) = —(12(517 —52)
al(fl»&) = _al(_€17€2)7 02(51752) = a2(‘§1752)

then (1) has a D—solution vanishing uniformly at infinity.

} ) V(gb&?) € aQ:

11



Theorem 4. [15] — Let Q be a Lipschitz exterior domain of R* symmetric with respect
to the axis 1 and let a = (a;,ay) € WY22(0Q). If

a1(&1,&) = (&, —&), a2(&, &) = —ax(&r, =€), V(&1, &) € 09,
then (1) has a D—solution.

Theorem 5. [16] — If Q@ C R? is an exterior domain of class C? and a € W'/*2(9Q)

satisfies
/ a-n=0, (44)

B)
then (1) has a D-solution.

So in the last theorem we replace the assumption (32) (that flux through every bound-
ary component is zero) by weaker assumption that total flux is zero. Unfortunately, this
last assumption is also far from being a necessary condition for the solvability of the
problem (cf. with Theorem 2) .

Theorem 6. [16] — Let (u,p) be a D-solution to the Navier-Stokes equations

vAu —div(u®@u) —Vp=0 in Q,

divu =0 in , (4)

in the exterior domain 2 C R?. Then w is uniformly bounded in Qy = R?\ B, i.e.,

sup |u(z)| < oo,
2€Qo

where B = Bp, Is an open disk with sufficiently large radius: B 2 0f2.

Theorem 7. [17] — Let (u,p) be a D-solution to the Navier Stokes equations (45) in the
exterior domain ) C R?. Then u converges uniformly at infinity, i.c., there exists a vector
U € R? such that

u(2) = Us uniformly as |z| = U.

Theorem 8. [18] — Let 2 be an exterior domain in R* with C*-smooth compact boundary,
and 0 # ug € R%  Take a sequence wy of solutions to system (31) with boundary
data a = 0, and take further arbitrary weakly convergent subsequence uy, — w. Then
the limiting solution w to (1) is nontrivial (i.e., w is not identically zero ). In particular,
the Leray solution is nontrivial.

Theorem 9. [18] -~ Let Q be an exterior domain in R* with smooth compact boundary,
and let a € R? be a nonzero constant vector. Take a sequence u;, of solutions to the system

—VA’LLk + (’ll,k . V)uk + Vpk =0 in Qk,

diV’U,k =0 in Qk,
46
up = a on 0f), (46)

up, =10 for |z| = Ry,

and take further an arbitrary weakly convergent subsequence wy, — w. Then w is a non-
trivial solution to the system (1), i.e., u # a.

12



Together with Finn and Smith theorem [6], recalled at the end of section 4, Theorem
8-9 show that Stokes’ paradox is typical of the Stokes equations (3).

Note that in all the above theorem there is no restriction on the size of the data a and
v. The proof of many results here based on some real analysis tools and fine properties
of functions, such as Coarea formula, etc.

Clearly, many important problems remain open. Let us point out what we deem most
significant:

(i

the relation between the constant vectors ug in (31); and u., in Theorem 7;

)
(#7) the existence of a D—solution without assumption (44);
(7i7) the validity of Finn- and Smith theorem for every data v, a and uy;
)
)

(7v) uniqueness of a D—solution;

the rate of decay of a D—solution vanishing at infinity, of course depending on v in
view of Hamel counter—examples (see [7] p. 805 and [19] p. xi, xii).

(v
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