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1 Introduction

Coherent configurations are a generalization of association schemes. Asso-
ciation schemes and coherent configurations are defined as sets of {0,1}-
matrices, called adjacency matrices, satisfying some conditions (see Defini-
tion 2.1 and [2]). Adjacency algebras of association schemes and coherent
configurations are defined as algebras spanned by adjacency matrices over
the complex field C.

Commutative association schemes are association schemes satisfying that
all adjacency matrices are commutative each other. Commutative association
schemes have primitive idempotents and the sets of primitive idempotents
are bases of adjacency algebras.

For commutative association schemes, fusion schemes are considered in [1]
and [9] and these papers revealed the equivalent condition for commutative
association schemes to have fusion schemes, called the Bannai-Muzychuk cri-
terion. In the proof of this equivalence, partitions for both sets of adjacency
matrices and primitive idempotents are given.

On the other hand, the sets of primitive idempotents for non-commutative
association schemes and coherent configurations are not bases of adjacency al-
gebras of them. In stead of the sets of primitive idempotents for commutative
association schemes, we may consider decompositions of adjacency algebras
of non-commutative association schemes and coherent configurations given



by the Wedderburn theorem. The wedderburn theorem is a theorem in the
representation theory of algebras and gives bases for adjacency algebras of
them (see Definition 3.1 and [8]). For non-commutative association schemes,
[8] revealed the sufficient condition for non-commutative association schemes
to have fusion schemes.

In some sense, fiber-commutative coherent configurations (see Defini-
tion 2.2) can be regarded as a generalization of commutative association
schemes. In this paper, we reveal an equivalent condition for fiber-commutative
coherent configurations to have fusion configurations. To describe the equiv-
alence, we use bases of adjacency algebras of fiber-commutative coherent
configurations, called bases of matrix units (see Definition 3.1). Since the spe-
cialization for commutative association schemes of this equivalence is same
as the Bannai-Muzychuk criterion (see Corollary 5.1), this equivalence is a
natural generalization of the Bannai-Muzychuk criterion. Note that, bases of
matrix units for adjacency algebras of coherent configurations are defined in
[7] as a specialization of [4], [5]. In particular, for fiber-commutative coherent
configurations, the concept of bases of matrix units for them are described
in [6].

2 Coherent configurations

Let X be a finite set and R; C X x X be binary relations for ¢ = 0,1,...,d.
For R;, adjacency matrix A; with respect to R; is defined as (A;)y, = 1 if
(z,y) € R; and 0 otherwise.

Let I, J € Mx(C) be the identity matrix and the all-ones matrix, respec-
tively.

Definition 2.1. For a finite set X, let Ry, Ry,..., Ry C X x X be binary
relations of X x X and Ay, Aq,..., Ay be the adjacency matrices. A coherent
configuration (X,{R;}L,) is defined as

(i) there exists a subset K C {0, 1,...,d} such that Z A =1,

icK
d
(i) Y A=,
i=0
(iii) for any i € {0,1,...,d}, there exists i’ € {0,1,...,d} such that Ay =
AT



d
(iv) Ad; = pli Ay,
=0

The algebra spanned by Ag, Aq,..., Ay over C is called the adjacency alge-
bra. Coherent configurations with |K| = 1 are called homogeneous coherent
configurations or association schemes.

For a coherent configuration C = (X, {R;}¢_,), since the index set
{0,1,...,d} is not suitable for this paper, we rearrange it into an index set
of triples as follows: By the Definition 2.1(i), I € M,,(C) is decomposed into
{0, 1}-matrices. This implies that X is decomposed into X = [, X for the
set F'={1,2,...,|K|}. By the Definition 2.1(iv), for any k& € {0,1,...,d},
there exist 4,7 € [F' such that R, C X; x X;. For any ¢,j € F, we de-
note r;; = #{k € {0,1,...,d} | Ry C X; x X;}. Thus the index set
{0,1,...,d} can be replaced by {(i,j,a) | i,j € Fa € {1,2,...,r;;}} and
{Rk}g:o = {Ri,j,a | 1,7 € Fla € {1, 2,..., Ti,j}}-

Note that, the each Xj is called a fiber. In the rest of this paper, we always
use {(4,7,a) | i,j € F,a € {1,2,...,r;;}} as the index set of adjacency
matrices and relations instead of {0,1,...,d}.

For brevity, we always assume that A;;; = Ix, forall < € F and A;;, =
Al;  foralli, j € F (i # j), where I, is the diagonal matrix with (Ix,)s . = 1
if z € X; and 0 otherwise.

Let 24 be the adjacency algebra of C. Since 2 is a subalgebra of M x(C),
2l is decomposed into a direct sum of subspaces: A = EBZ jeF 2L; ;, where 2L, ;
are subspaces of 2 spanned by {4;,.,|a € {1,2,...,7;,;}} fori,j € F. It is
clear that {A4;;,|a € {1,2,...,7,;}} is a basis of A, ;.

Definition 2.2. Let C = (X,{R,j.}ija) be a coherent configuration with
fibers X = [[,.p X;. For each i € F, the coherent configuration C is fiber-
commutative if RA;; is commutative for all ¢ € F. Similarly, C is fiber-
symmetric if 2;; is symmetric for all ¢+ € F'. Fiber-commutative coherent
configurations with |F'| = 1 are called commutative association schemes.

3 Fiber-commutative coherent configurations

In the rest of this paper, we assume that all coherent configurations are
fiber-commutative.



Let 2 be the adjacency algebra of a fiber-commutative coherent configu-
ration C. Let ® = {¢5 | s € S} be a set of representatives for all irreducible
matrix representations of 2 over C satisfying ¢s(A)* = ¢5(A*) for any A € 2,
where * denotes the transpose-conjugate. Since 2l is semisimple, 2l is decom-

posed into
1= @e,

ses
where €5 is a simple two-sided ideal affording ¢s. Moreover, for each s € .S,
¢, is isomorphic to M, (C), where M, (C) is the es x e, full-matrix algebra
over C.
Since C is fiber-commutative, for any s € S,i € F,, dim(2,;; N &) < 1
holds (see [7, Lemma 2.9]). This assertion is also proved in the view of the
representation theory by [3, Proposition 2.1]. Thus, for each s € S, let

Then we may construct following bases (see [7, Definition 2.3]). In addition,
it is clear that e; = | F| holds for each s € S.

Definition 3.1. Let 2 be the adjacency algebra of a fiber-commutative co-
herent configuration. Bases of matriz units for 2 are defined as matrices
{ei; | s € S,i,j € Fy} satisfying

(i

) for any s,t € S, 4,5 € Fy, k,l € Fy, €6}, = 05401}
(ii) for any s € S, 4,5 € F,, 7" = &}
)

)

0,00

jyio

(iii) for any s € S, i,j € Fi, &7, € 2y j,

(iv) for any s € S, Fhere exist § € S such that, F; = F, and, for any
i, € Fs, 6] =¢i ;.

Note that {e}; | i,j € Fi} is a basis of & and {¢}; | s € S,i,j € F} isa
basis of 2.
Let
Si,j = {S es ‘ dim(QLL-,j N Qts) = 1}

for each i,j € F.

Proposition 3.2. Fori,j € F, Sm’ = Sm‘ N SjJ'.



Proof. By €7, € 2;; if and only if €}, € 2;; and &} ; € %A;; for s € 5, the
result follows, u

Let

A=T]F x Fox{s} = J]{i} x {4} x Si (1)

s€S ijEF

be the set of triple indices of bases of matrix units for 2. Since A is decom-
posed into (1), for any 4,5 € F, {¢}; | s € Sj;} is a basis of the subspace
2 5.

Thus, foré,j € F, A;;has {A;jq | a € {1,2,...,7r;;}} and {&]; | s € 5y 5}
as bases and it means that these matrices are expressed as

,]a - E pz,]a ,]7

s€8;,;

Ti,j
S

51’,] - WZQ%JS 4,7,Q

for pi,j,a(3)7 qi,j,a(s) eC

Definition 3.3. For a fiber-commutative coherent configuration C, the first
and second eigenmatrices are defined as P = (P, ;)i jer, @ = (Qij)ijer, re-

spectively, where (P j)so = (Dija(s)) and (Qij)as = ijs(a).

Note that P, () have matrices in their entries. By this definition, P; ;, Q; ; €
M, ;(C) satisfy P ;Qi; = /X[ X;|1

Tig°

4 Fusions in fiber-commutative coherent con-
figurations

Let C = (X, {Rija}ija) be a fiber-commutative coherent configuration with
fibers [[,cp Xi, A = (Aija | .5 € F,a € {1,2,...,7r;;})c be the adjacency
algebra of C and {&}; | (i,j,s) € A} be the bases of matrix units for the
adjacency algebra 2, where A = [, ;p{i} x {j} x S;;. Moreover, let P =
(P;;) be the first eigenmatrix of C.

In this section, we give an equivalent condition for a subalgebra of 2 to
be the adjacency algebra of a coherent configuration with the same fibers as
those of C.



Definition 4.1. A coherent configuration C' = (X, {R;,,}ija) i3 a fusion
configuration with the same fibers as those of C if C and C' have the same
fibers and the adjacency algebra 2 of C’ is a subalgebra of .

Note that, since C is fiber-commutative, each fusion configuration with
the same fibers as those of C is fiber-commutative.

Definition 4.2. A family of partitions A = {A;; | i,j € F} is called
admissible if

(1) for any Z,] S F, H(SEAi,j 0= {17 27 cee 7T’i,j}7
(ii) for any i € F, {1} € A;;,

(iii) for any 6 € A, {a € {1,2,...,7:} | AT, , = Ajjp for some b € 6} €
Aji.

Lemma 4.3. IfC’ is a fusion configuration with the same fibers as those of C,
then there exists a uniquely determined admissible family of partitions A =
{A;; | 1,5 € F} such that C' = (X, {R;’jﬁé}mﬁ), where R;Jﬁ = [ues Rija
for § € A;;. Conversely, if A = {A;; | 1,7 € F} is an admissible family
of partitions, then the set {A ;| i,j € F,0 € A} satisfies conditions of
Definition 2.1 (i), (i), (iii), where A} ;; = > c5 Aija-

Proof. Let {A};, | i,j € F,b € {1,2,...,7],}} be the set of adjacency
matrices of C" and 21’ be the adjacency algebra of C'. Then 21’ is a subalgebra
of 2l and it implies that, for any 4,7 € F' and b € {1,2,...,7]}, there exists
a subset 6; ;, C {1,2,...,7;,} such that

! — ..
Ai?jyb - Z Al?]ya‘

ae(si,j,b
By Definition 2.1 (i), (ii), (iii), for all i, j € F', A;j = {dijp | b€ {1,2,...,77;}}
satisfy Definition 4.2 (i), (ii), (iil) and A = {A,; | 4,5 € F'} is admissible.
The converse is clear by Definition 4.2. O

The following theorem essentially reveals the condition in Definition 2.1 (iv).

Theorem 4.4. Let G = (V, E) be a bipartite graph with V- = F U S and
edge set B = {(i,s) | (i,i,5) € A}. Then C' = (X, {R};s}ijs) is a fusion
configuration with the same fibers as those of C, where R} ; s = [[,c5 Rija for

d e A;j, if and only if A ={A;; | i,j € F} is admissible and there exist
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(I) diagonal matrices C;; indeved by S;; % S;j with (Cyj)ss = ¢i; for
i,j €F,

(II) an index set S and subsets T, C S, F, C F for o € S’ which gives a
partition {F, xT, | o € S’} of E into complete bipartite edge-subgraphs;
E=1l,ce Fo x Ty,

such that, for anyi,j € F,
(1) [Aiz] =[5,

(i) for any s € Haesgj Ty, ¢ =1, |cf’j| =1,¢};= ? = cfyj,
(iii) for any o € S};,0 € A j, row sums of the submatriz of C; ;P ; indeved

by T, x 0 is a constant pj ; s(o) and row sums indezed by O; ; X § is 0,

where S; ; ={o € S" | F;, 31,5} and O;; = S\ (HJESQJ Tg), Moreover, if
C' is a fusion configuration with the same fibers as those of C, then the first
eigenmatriz P' = (P ;) of C' with respect to bases of matriz units {']; | o €
S'i,j € Fy}is given by (P ;)es = p; j5(0) for o € S;;,0 € Ay j, where

)j’

SETO‘

foroe S i, jEF,.

5 Applications

In this section, we apply Theorem 4.4 to commutative association schemes,
fiber-commutative coherent configurations and the fiber-commutative coher-
ent configuration given by Zj x Sg.

5.1 Commutative association schemes

Commutative association schemes are defined as fiber-commutative coherent
configurations with |F| = 1.

We assume F' = {1}. For brevity, we omit indices given by F. Let X =
(X,{R.}!_1) be a commutative association scheme and {¢* | s € S} be its
primitive idempotents. Since X has only one fiber, any fusion configuration
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with the same fiber as those of X has also a fiber X and is called a fusion
schemes. Then an admissible partition A for X satisfies

(i) {1} €A,
(ii) for any 6 € A, {a | AT = A, for some b € 6} € A.

Let S’ be an index set with |S’| = |A| and, for o € S’, let T, C S. Note
that, by |F| = 1, F = F, hold for all ¢ € S’. Then the bipartite graph
G = (V,E) defined by X has vertex set V.= FUS = {1} U S and edge
set E = {(1,s) | s € S}. Thus the partition {{1} x T, | ¢ € S’} of
E can be identified with the partition {7, | 0 € S’} of S. Moreover the
first eigenmatrix P is decomposed into submatrices indexed by T, x ¢ for
o€ S, 0e A In this case, it is clear that ¢ =1 for all s € S and O = (.

Thus Theorem 4.4 for commutative association schemes is specialized as
follows.

Corollary 5.1 (Bannai-Muzychuk criterion, [1, Lemma 1] and [9]). Let
X = (X, {Ri}_)) be a commutative association schemes, {e* | s € S} be
its primitive idempotents and P be its first eigenmatix. Then X has a fusion
scheme X = (X, {Rj}sen) given by a partition A, where R' = [], s Ra for
0 € A, if and only if A is admissible and there exists a partition {T, | o € S’}
of S such that |S'| = |A| and for any o € S',6 € A, row sums of the subma-
triz indexed by T, X 0 of P is constant.

5.2 Trivial fusion configurations with the same fibers

Any fiber-commutative coherent configuration has a trivial fusion configura-
tion with the same fibers. Let C = (X,{Ri a}ija) be a fiber-commutative
coherent configuration and A = @i’ jeF 2(; ; be its adjacency algebra. Define
an admissible partition A = {A;; | 1,5 € F'} as follows:

(i) fori € F,Au; = {{1},{2},.... {rii}},
(i) fori,j € F (i #5), Ay = {{1,2,...,mi;}}.

By the definition of A, it is trivial that A gives a subalgebra A’ = €D, ;. 2} ;
such that 2j, = A;; and A}, = (30 Ajja)c for @ # j and A’ is the
adjacency algebra of a certain fusion configuration C’ with the same fibers



as those of C. By Theorem 4.4, the edge set E of the bipartite graph G is
decomposed into

E=(Fx{sohu J] {G.s)}

(i,)eE
S#S0
where €, = (30 Aija | 0,5 € F)c is the simple two-sided ideal of 2A

corresponding to so € S. In other words, Both 2 and 2’ have €, as a simple
two-sided ideal. In this case, for any i,j € F (i # j), |S;;| = |Si| and
Om’ = Sm’\{S()} hold.

5.3 The fiber-commutative coherent configuration given
by Zé X Sg

There is a unique primitive permutation group G of degree 81 of the form
G ~ 73 x Sg, where Zj is the cyclic group and Sg is the symmetric group on
6 letters.

Since G has nontrivial outer automorphisms, we fix an outer automor-
phism z. Let G' = {(g,9") | ¢ € G} be a permutation group of degree 162.
Then the set of all orbits of G gives a fiber-commutative coherent configura-
tion C = (X, {Ri,j,a}i,j,a) with F = {1, 2} and 1 =T22= 4,7‘172 =T21 = 3.
Moreover the adjacency algebra 2 can be decomposed into

where €, ~ My(C) for i = 0,1,2 and €, ~ C for i = 3,4. By this decom-
position, we may write Fy, = Fs, = F,, = {1,2}, Fs, = {1}, Fs, = {2}. The
first eigenmatrix P = (P, ;) can be written as

1 2 3 4 1 2 3 4

sof 1 30 20 30 sof1 30 20 30

Py = s111 -6 2 3 Py — s1l1 —6 2 3
ss!1 3 -7 3 ssl1 3 =7 3

s3\1 3 2 -6 sa\1 3 2 -6



1 2 3

sof 15 60 6

Po=FPi= 51 3 -6 3
so\—6 3 3

Note that A;;, are symmetric for all i € {1,2},a € {1,2,3,4} and A], , =
Ay 1, hold for all a € {1,2,3}.

For C, let S" = {0¢,01,09,03} and, we define A = {A;; | i,j € {1,2}}
and T, F, for 0 € S’ as follows:

Aip = Dop = {{1},{2,3},{4}},
A1,2 = AQ,I = {{17 2}7 {3}}7
Toy = {0}, Foy = {1,2},

1 {81782}7F01 = {172}7

, = {83}, Fo, = {1},

s = {sa}, Foy = {2}

Then A,T,, Fy, satisfy the conditions in Theorem 4.4 with ¢;; = 1 for all
i,j €{1,2},s € S;;. In this case, 012 = Os are empty. Thus a fusion con-
figuration with the same fibers as those of C is obtained and its eigenmatrix
P = (P.,) is

{1} {23} {4} {1} {23} {4}

o 1 50 30 oof 1 50 30
=0 1 -4 3 |[\Py=o0| 1 -4 3
oo \ 1 5) —6 oz \ 1 ) —6

{1,2} {3}

10) 6
P/ :Pl — UO .
(B )

Moreover, 2 has the following subalgebra 21”. Since this subalgebra is
not closed with respect to the transpose, this subalgebra is not an adjacency
algebra of any fusion configuration. For i = 1,2, we construct subalgebras
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R, C A;; which is the same as above; i.e.
"
& = (Ajins Aiio + Az, Aiia)c
. S0 51 S2 Sa
- <€’L’L7EZZ +€’L’L7 zz>(C7

where o =3 if 71 =1 and o« =4 if i = 2. Thus the transition matrices with
respect to these bases are P, = F/; for i = 1,2. On the other hand, in

2,1

2 9,As 1, we construct subspaces A5, A7, as follows;
3 3 1,27 **2,1 )

12— (A121+ A123, A122)c

1
521; \/5( 512 ><C

Note that the transition matrices with respect to these bases are
{1.3t {2} {1} {23}
pr.— o) 21 60 P o 15 66
27 g\ 6v2 —6v2)7 "2 o \6V2 —6v2 )

where 0y, 01 correspond to {so}, {s1, s2}, respectively. Then

)

1
<512a\/§(511 251 ))c;

/2,1 = (As11,A212+ A213)c
= (&3 )

2

v - B,

i.j=1

is closed with respect to the matrix multiplication and this is a subalgebra
of 2 which is not closed with respect to the transpose.

This example shows that adjacency algebras may have subalgebras which
are closed with respect to the Hadamard product and not adjacency algebras.
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