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1 Introduction

This article is a survey of the work [6], which is a joint work with Takayuki Kobayashi,
Professor of Osaka University and Takayuki Kubo, Professor of University of Tsukuba.

We consider the local energy decay properties of solutions to the initial-boundary value
problem of the hyperbolic type Stokes equations:

70U — Au+ Ou+ (1+70,)Vr =0 in Q x (0, 00),
V-u=0 in Q x (0, 00), (HS)

ulon =0, (u, 0u)|i=o = (uo, u1)

with unknown velocity field u = (ui(x,t), ..., u,(x,t)), unknown pressure 7 = 7(x,t) and
given vector function (ug, u1). Here, 7 < 1 is a positive constant describing the relaxation
parameter and () is a domain of R™ (n > 2) with smooth boundary. We consider the
following cases:

(i) Q is an exterior domain of the n-dimensional Euclidean space R", that is, there exists
a number r > 0 such that Q \ B, = R"\ B,, where B, = {z € R" | |z| <r}.

(i) 2 is a perturbed half-space, that is, there exists a number 7 > 0 such that Q \ B, =
R™ \ B,, where R} = {(2/,z,) | 2/ € R*"!, z,, > 0}.

This model arises from a time delayed version for the deformation tensor in the parabolic
type Stokes equations (see [9]).

The investigation of the local energy decay properties are essential step to prove the
global-in-time unique existence theorem corresponding to the nonlinear problem in an
exterior domain and a perturbed half-space.

In the case of the parabolic type Stokes equations, when () is an exterior domain of
R™ (n > 3), Iwashita [5] investigated the local energy decay properties based on the resol-
vent expansion near the origin. Lator on Iwashita’s work, Dan, Kobayashi and Shibata
[3] and Dan and Shibata [2] also proved the local energy decay estimate. They improved
Iwashita’s results and extended to 2D case. Here, the decay rate of the local energy decay
estimate is t~*(logt) ™2 (n = 2), t™"/2(n > 3) as t — oo.



When € is a perturbed half-space, Kubo and Shibata [8] proved the local energy decay
estimate based on the resolvent expansion near the origin obtained in [7]. Here, the decay
rate of the local energy decay estimate is t~™+1/2 (n > 2) as t — oo.

In the case of the hyperbolic type Stokes equations (HS), when (2 is an exterior domain
or a perturbed half-space, as far as we know, there are no results. The idea of our proof
is based on Dan and Shibata [1]. They proved in [1] the local energy decay estimate to
the dissipative wave equations in 2D exterior domain by use of the resolvent expansion
for the Laplace operator. Therefore, we prove the local energy decay estimete to (HS) by
use of the resolvent expansion for the Stokes operator.

2 Main result

To state our results more precisely, we outline our notaion. Let ry be a fixed constant
satisfying (i) or (ii) in Section 1. We set €2, = QN B, for r > ry and

Coo () ={ueC5(Q) | V-u=0in Q},

L2(Q) = the completion of Coo,(Q2) with respect to || - [|z2(q),
Hy

ag)

Q) = the completion of Cg7, () with respect to ||V - ||z2(q),

g

)
)
Q) = the completion of Cg, () with respect to || - || g1 (q),
)
)

(
o
(
(

G(Q) = {Vr e I}(Q) | m € L2, ()}

We set v = yu and U = T (u,v) and define a Hilbert space 52 (Q) by
H#(Q) = {U="(u,v) |u€ A}, (@), € L2()}
with inner product
(U, W) = (u,w)p +7(v, 2),
where (u,w)p = (Vu, Vw). Moreover, we set L2(Q) = {f € L*(Q) | supp f C Q,} and
() = {U ="(u,v) € #(Q) | suppuUsuppv C Q, }.

We treat (HS) as the semigroup theoretical framework. To do this, we use the Helmholtz
decomposition: L*(Q2) = L2(Q) ® G(S), where & denotes the direct sum. Let P be a con-
tinuous projection from L?(Q) to L2(€2). The Stokes operator A is defined by A = —PA
with domain 2(A) = Hj () N H*(Q). We define an operator L by

1/0 —7
L_F(A 1>

P(L) = {U — T(u,0) € #(Q) |ue D(A),ve ﬁgﬂ(m} .

with domain



Applying the projection P to (HS), the problem is written in the following form:

d
EU(t) = —LU(t) fort >0, Ul—y= Uy,

where Uy = T (ug, u;). Then, we obtain the following two theorems.
Theorem 2.1. —LL generates a Cy contraction semigroup {T'(t)}i>0 on F(Q).

Theorem 2.2. Let n > 2 be an integer and let r > rq. Suppose that the initial data
Uy € H&O_(Sl) and uy; € L2(2) and supp ug Usupp u; C Q.. Then, the solution u of (HS)
holds the following properties:

(i) When Q is an exterior domain, it holds that

[u(®) ]l 0, + VTN 20,y < Cor (14872 (luollir (@) + V7l || £2())
for any t > 0.
(ii) When Q is a perturbed half-space, it holds that

_n4l
[u(®) |10, + VTN 2200,y < Cop(L+8) 72 ([[uollmie) + VT llual r2()
for any t > 0.

Remark 2.1. The decay rate of (ii) in Theorem 2.2 is one half better compared with the
case (i) because the order of asymptotic behavior of the Stokes resolvent near the origin
in Proposition 3.1 is one half better compared with the exterior domain case due to the
reflection principle on the boundary in the half-space unlike the whole space.

3 Key lemma

We consider the resolvent problem:
A+ Au=f inQ, (3.1)

where A€ ¥, ={A € C\ {0} | [N </, |argA| <7m—€},0<l<1,0<e<m/2and Ais
the Stokes operator. Let S()\)f be defined as a solution to (3.1), W2(2) be a weighted
Sobolev space defined by

Wm2(Q) = {f] (1+]-P)2akf e L2(), kgm}

for any non-negative integer m and real number s. Moreover, for s > n/2 and s’ < —n/2,
we set

By = L (L2(Q) nW(Q)", LL(Q) N W2*(Q)"),
By =L (LLQ) N LAQ), L2(Q) N H*(Q,)) .

Then, by [2, Proposition 3.6], [5, Theorem 3.1, Corollary 3.2] and [8, Theorem 3.1], it
holds that the following proposition.



Proposition 3.1. There exist an £ > 0 and an S(A\) € Hol (3., B1) which has the
following expansion formula:

(i) When Q is an exterior domain,

S(\) = GiAztog A\ + Go(N\) + G3(A\)A2™Y  where n is even,
) G T 4 Go(N) + Gs(A)AE ! where n is odd,

where Gy € By, Ga(\) is a polynomial of X of deg Go(\) < [n/2] — 1 and G3(\) — 0
as X — 0. Particularly in case of n = 2, the following holds:

S(A) = Vi + Va(log\) ™" + O ((log \) %),
where Vi, Vy € Bs.
(ii) When Q is a perturbed half-space,

S(N) = Hi(MA"T + Hy(MAZ log A + Hs(\)  where n is even,
T Hi(W)AE + Hy(MA™Z log A + Hs(\)  where n is odd,
where Hl, HQ € Hol (E@)E, Bg) and H3 € Hol (Ef,e U {O}, BQ)

In Section 4, we investigate the stability of (AL + L)™' near the origin. To do this, we
use the class C* defined as follows and the properties of the class.

Definition 3.2 ([1]). Let X be a Banach space with norm |- |x. Let N > 0 be an integer
and k=N +o0 with 0 < o < 1. Set

CH(R,X) = {f € C¥*R\ {0} X) [ (F)x < o0}

32 |G ] g o () 0
f»kfé/: (&) v [ (@) o

Here, we have set

Anf(s) = f(s+h) = f(s), ALf(s)=f(s+h)—2f(s) + f(s —h).

Proposition 3.3 ([10]). Let N be a positive integer and X be a Banach space with norm
|- |x. Assume that f € C*(R\ {0}, X), f(s) =0 if |s| > 2 and set [ = (—2,2).

(i) Let k= N+ 0 with 0 < 0 < 1 and [ satisfy the following condition (a).

where

ds (0 <o <1),
b

ds (o =1).




(&) For any s € 1\ {0},
(4)

() s

Then, f € C*(R, X) satisfies

< C; for any integer j € [0, N — 1],

d N+1
< Cylsl, ‘(d—) 1(s)

X

< Cyls]72.
X

<<f>>kX < Ca,NCf'
(ii) Let k = N + 1 and f satisfy the following conditions (a) and (b).
(a) There exist fy € X and a X-valued function fi(s) defined on I such that

() £6)=floglsl+ fts) fors e 1\ (0}

(b) For any s € I\ {0},

(2 s

d N+1
folx < Cr, LAGs)Ix < O, |(d—) 5

() s

Then, f € C*(R, X) satisfies

< C;  for any integer j € [0, N — 1],

X

< Cyls| ™,

X

< Cyls|™%
X

(Fex < ConCy.
Proposition 3.4 ([1]). Let X be a Banach space with norm |- |x. Let f(s) € C*(R\

{0}, X). If

d’ :
(£> f(s)| < Cyls|™ forany s € R\ {0} and j =0,1,2. Then, it holds
that

X

1 [ee]
m/_oo ‘Aif(s)‘xds < Cy.

Proposition 3.5 ([10]). Let X be a Banach space with norm |- |x. Let N > 0 be an
integer and 0 < o < 1. Assume that f € CNT7 (R, X). Set

F@:%/f@%@

Then, the following estimate holds:
[F(6)]x < COA+ ) () vsox



4 Qutline of the proof

Theorem 2.1 follows from the Lumer-Phillips theorem. Hereafter, We concentrate the
proof of Theorem 2.2.

Lemma 4.1. Set
a

B 2a/T +2(3ar + 1)VT + 1

Then for any a > 0, there exists an M, > 0 such that

b(a)

(AT +1L y < M,

—1
) ||E(%(Q
for A € Dgpay = {A € C||ReA| < b(a),[ImA| > a} U{\ € C|ReA > b(a)}.

In what follows, ¢ > 0 denotes the same positive number in Proposition 3.1. Moreover,
let o, be a function in C§°(R™) such that ¢, (z) = 1if |z| <r and p.(z) =0if |[z| > r+1
and let pg be a function in C§°(R) such that py(s) = 1if |s| < d/2 and py(s) = 0if |s| > d.

Lemma 4.2. Let Qu = {\ € C|0 < Re X < d,|Im\| < d}. Then the following assertions
hold.

(i) There exist a d > 0 and an R(\) € Hol (Qq, L(F4.(2), H(€).))) such that
RA)X=(A+L)'X for XeH(Q) and e Qu,
where we have set

H) ={"(f.9) | f € H'(Q) N L;(Q), g € L*(Q) N L ()}

(ii) For any X € J6(2), Y € 5(R2) and o < d, there exists a positive constant C' =
Chropaser Such that the following assertions hold.

(a) When €) is an exterior domain, the following estimate holds.
{paC) (@ R(a + )X, Y)or@)) w g < ClIX L@ Yl @)-
(b) When Q is a perturbed half-space, the following estimate holds.
{pa()(orR(a + @)X, V)i ) nsr g < CIX L 1Y 0
Proof. (i) In terms of S()), we shall represent (AL + L)™' If we set X = 7(f, g) and
M +L)U=X for Ue 2(L),

we have

v=A—f and {A(TA+1)+Au=(TA+1)f +7g.



We take ¢' < ¢ so small that there exists an € < 7/2 such that A(TA+1) € X, if A € Xy .
If we set

TA+ DS+ 1 TSANTA+1
R(A) = )\(7§A+1)g”()(\(7§)\+1)))>— 1 TAS((A((TAH)))) ) (4.1)
we obtain
RA)X=A+L)'X for X€(Q) and )€ Xy,

because R(A)X € Z(LL) as it follows from the fact that S(A(TA + 1)) € L(L*(Q), H*(Q)).
Therefore, R(\) satisfies the property of (i) with d = 2¢'/3.
(ii) follows from Proposition 3.1, 3.3 and 3.4. O

By Theorem 2.1, the following estimate holds:
1Tl ey <1, V6= 0. (4.2)
Then, by a lemma due to Huang [4, Lemma 1], we have the following lemma.

Lemma 4.3. For any a > 0 and X € 5€(Q2), set
9(w) = ||((o + i)l + L)' X]| g -

Then, g(w) € L*(R) and

lim g(w) =0,
|w|—00
o 7
| swrds < T1X o

Now, we shall give a proof of Theorem 2.2. Since the proofs of an exterior domain
case and a perturbed half-space case are essentially the same, we only prove an exterior
domain case. To do this, it is sufficient to prove the following proposition.

Proposition 4.4. Let Q be an exterior domain, p, be the same in Lemma 4.2. Then, it
holds that

lor T)X ) < CL+8) 72 X Lo (4.3)

for any t > 0 and X € J(Q2), where C = Cu, pp, and M, denotes the constant arising
from Lemma 4.1.

Proof. Since (4.2) holds, we have the following expression formula:

1 atiw
T(H)X = lim —/ MOL+L)IXd), a > 0.

w00 270 J i

Hereafter, we set p(s) = pa(s). Let us take a < d, X € 5.(Q2) and Y € (Q2). Then, we
see

((prT<t>X7 Y)%(Q) = JO@) + JOO@)?



where

1 a = 8 . —
Jot) = e /_ 0ls) (el ST+ L)), s
1 «@ “ 18 - —
Joo(t) = 7€ twll_{go » e“'(1— p(s)) (¢r((a +is)I+ L)X, Y)%(Q) ds.
By Lemma 4.2 and Proposition 3.5, we obtain
[Jo(6)] < Ce(1+ )2 ||X Lo | Y| e (4.4)
We set
1
Joo(t) = =€ lim Ly (t),
2 w—00
where

L,(t) = /w e“'(1 = p(s)) (¢r((a +is)I+ L)X, Y)%,(Q) ds.

By the relation (it) 'de’!/ds = €'*' and integration by parts, we have

¢ k—1 1
=> -, LE(t) + ) ML (1),

2 (i) (it)

where
LE(t) = [e“t% {(1 —p(9)) (gor((oz +is)I + L)X, Y)%(Q)}] :i:} ;

ML(t) = /w e“t% {(1 = p(s)) (er((a +is) T+ L)X, Y)mm} ds.

Since we have by Lemma 4.1

d]

. i . 1
‘ To —((a+is)[+ L)~ ! . < JIMJ||((a +is)I + L) ”l:(%(ﬂ)) for |s| > a,
it follows from Lemma 4.3 that
ILE(#)| =0, w— . (4.5)
Using the Leibniz rule and the adjoint operator IL* of L, we obtain
|ML(t)] < l![i (1—p(s)) ‘(((a—i—is)ﬂ—i—L)_lX,((a—is)I[—i—]L*)_ %(Q ‘ds
§S|5|§w
— (! d* k-1
k! Ala+ i+ L)X Y) | d
+ kXZ; (l{?) /21§5|<d dSl_kp( ) (gp ((O[ + ZS) -+ ) S
=K+ K,



If we take a < d/2, by Lemma 4.1 and Lemma 4.3, we have

1
2

K, <cl'M: (/ | (v +is)I+ L)‘IXH;,(Q) ds)
2<s| /
’ 1
9 2
x / (@ = i)+ L) 2, Y% ds
g<ls|
< o, XL 1Y [ (- (4.6)
Moreover, by Lemma 4.1, we see
Ko < Con, [ XL Y] ) (4.7)
Combining (4.5), (4.6) and (4.7), we obtain

e()zt

2m
for any [ > 1. Letting @ — 0 in (4.4) and (4.8), we obtain (4.3) for any X € .7.(Q2). O

| Joo (1) <

t' Cont, |IX e 1Y () (4.8)
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