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1 Introduction

This article shows local and global existence theorems in a maximal regularity class for
a compressible fluid model of Korteweg type as follows:

Op +div(pu) =0 in Q x (0,7T),
p(Ou+u-Vu) =Div(S(u) + K(p) — P(p)I) in Q x (0,T),
n-Vp=0, u=0 onl x(0,7Tp),

(P, w)|i=0 = (po + pos, o) in £,

(1.1)

where €2 is a domain in RY, N > 2, with boundary I' and Ty is a positive number.

Here p = p(x,t) and u = (uy(z,t),...,un(x,t))T" are respectively the fluid density and
the fluid velocity at © = (x1,...,zy) € Q and t € (0,Tp); P is a given function describing
the pressure and I is the N x N identity matrix; S(u) is the viscous stress tensor given
by S(u) = uD(u) + (v — p) divul, where p,v > 0 are viscosity coefficients and D(u) is
the doubled deformation tensor, i.e. D(u) is an N x N matrix whose (i, j) component is
given by 0;u; + 0ju; for 0; = 0/0x;; K(p) is the so-called Korteweg tensor, i.e.

K
K(p) = 5 (Ap* = [Vp[") T=£Vp 2 Vp
\V4 2

=K (pAp%—%) I-xVp® Vp, (1.2)
where £ > 0 is a capillarity coefficient and Vp ® Vp is an N x N matrix whose (i, j)
component is given by (0;p)(0;p); n is the unit outward normal vector to I' and a -
b = SN ab; for N-vectors a = (ay,...,ayx)" and b = (by,...,bx)"; po = po(z) and
uy = (up1(),...,uon(2))T are given initial data, while p. is a positive constant.

Throughout this article, we assume

IMT denotes the transpose of M.



Assumption 1.1. (1) The coefficients p, v, and K are positive constants.
(2) The pressure P : (pso/8,8ps) — R is smooth enough.

Korteweg formulated in 1901 some tensor that included gradients of density in order to
model fluid capillarity effects, and Dunn and Serrin [2] derived (1.2) in view of rational
mechanics by introducing the thermodynamics of interstitial working. Concerning the
mathematical analysis of Korteweg-type model, we refer e.g. to [5, 1, 4, 15] for the whole
space problem and to [6, 7, 8, 9] for boundary value problems. On the other hand, [10]
employs the Korteweg-type model in order to analyze the structure of liquid-vapor phase

transition in numerical analysis.

2 Preliminaries

Let p € (1,00), and let ¢ € (1,00) or ¢ = co. We here introduce function spaces used
throughout this article as follows:

e [,(G) and H["(G), m € N, are respectively the usual Lebesgue spaces and the
Sobolev spaces, where G is a domain in RY. The norm of L,(G) is denoted by
| - ll4(c), While the norm of H;*(G) is denoted by || - || (c)-

e Let (-,-)g, be the real interpolation functor for # € (0,1). Then the Besov spaces
B2 2P(@) and B2,*?(G) are defined as

By, PM(G) = (Hy(G), H(G)r-1jppy - By, *"(G) = (Ly(G), Hy(G))1-1/pp-

q q

e Let X be a Banach space and I be an interval in R. Then L,(I, X) and H, (I, X) are
respectively the X-valued Lebesgue spaces and the X-valued Sobolev spaces. The
norm of Ly(I, X) is denoted by || - ||z, z,x), while the norm of H (I, X) is denoted

by [ - [ .x)-
e Let T € (0,00) or T' = co. Then (H,((0,T), X) is given by

oH,((0,T),X)={f € H)((0,T),X) : flemo =0 in X}

Next, we introduce the definition of uniform C? domains.

Definition 2.1 ([3, 14]). Let D be a domain in RN with boundary OD. Then D is
called a uniform C® domain, if there exist positive constants o, 3, and K such that
the following assertion holds: for any xo = (zo1,...,Ton) € OD, there are coordinate



number j and a C* function h(z') (' = (x1,...,2j-1,Tjs1,...,2n)) on BL(x}), with
xo = (Zo1, - - -, Toj—1, Toj+1, - - - , ToN),
B (zg) = {z e RV | |o' — x| <o}, |hllmz sy < K,
such that
DN Bs(zo) = {x € RN 1 z; > h(2'), 2" € Bl ()} N By(wo),
OD N By(wg) = {z € RN 2, = h(2/), 2" € Bl ()} N By(wo).
Here Bg(zo) = {z € RN : |z — xo| < B}.

Remark 2.2. Typical examples of uniform C® domains are as follows: bounded domains;
exterior domains; half-spaces, layers, tubes, and their perturbed domains.

3 Local solvability
3.1 Linearization

Let us start with the linearization of (1.1). Replace p by p+ ps in (1.1). Then the first
equation becomes
Oip + pscdivu = —pdivu —u - Vp; (3.1)

the second equation becomes

PocOrt — Div(S(u) + kpc ApI) = —pdiu — (p + poo)u - Vu
+ Div(K(p + poc) — KpocApI)
- Pl(p + poo)vp7 (32)

where P'(s) = (dP/ds)(s). To prove the local solvabiliity, we further rewrite (3.1) and
(3.2) as follows:

9+ (po + poo) divu = —(p — po)divu —u- Vp
=: F(p,u);

for p = p/k and v = v/k,

(o + poo)Oru — K Div(uD(u) + (v — 1) divul 4 (po 4 poo) Apl)
=—(p = po)dua — (p + pos)u-Vu

+ Div(K(p + poo) — £(po 4 poo) ApI) — P'(p 4 pos)Vp
=:G(p,u).



Setting v = po + peo, We have achieved the following equivalent system of (1.1):
F(p, in  x (0,Ty),
ou — 'k Div(aD(u) + (7 — 1) div ul + yApl) = v 'G(p, in Q x (0,Tp),
n-Vp=0, u=0 onl x(0,7p),
(P, )]t=0 = (po,uo) in €.

Op + ydivu = u)
u)

(3.3)

3.2 Linearized problem

For a positive number S, we consider a linearized problem associated with (3.3) as

follows:
Op+yndivau=f in Q x(0,9),
oma — 7, Div (voD(u) + (73 — 7o) divul + v Apl) =g in Q x (0, 5),
n-Vp=0, u=0 onl x(0,9),
(P, W)]t=0 = (po,uo) in Q,

(3.4)

where Q and v; = v;(x) (i = 1,2,3,4) satisfy the following assumption.

Assumption 3.1. (1) The domain € is a uniform C* domain in RN, N > 2, and its
boundary is denoted by T'.

(2) The coefficients v; = v;(x) (1 = 1,2,3,4) are uniformly Lipschitz continuous functions
on Q, i.e. there emists a positive constant vy, such that |yi(x) — vi(y)| < vo|x — y| for
any x,y € Q and for i = 1,2,3,4. In addition, there exist positive constants ., v*
such that v, < ;(z) < ~* for any x € Q and for i =1,2,3, 4.

Let g € (1,00) and X, = H}(Q) x L,(2)". We define an operator A, by
Ag(pyu) = (=71 divu, 75 Div(eD(u) + (3 — 72) divul + 1 ApI)),
with the domain D(A,):
D(A,) ={(p,u) € xH}(Q) x H: ()Y [n-Vp=0, u=0onT}
Note that D(4,) C X, and A, : D(A,;) — X,. One then has

Lemma 3.2 ([12]). Let ¢ € (1,00) and suppose that Assumption 3.1 holds. Then A,
generates an analytic Co-semigroup {e?e'};>q on X,. In addition, there exist constants
01 > 1 and Cn 45, > 0 such that for any t >0

||€Aqt(p0> 110)||Xq < CN,q,516(61/2)t||(p0> uO)HXq ((’00’ uo) < Xq)’



10e™" (po, wo)l|x, < O™/t [[(po, wo)lx,  ((po, w0) € X,),
106 (po, w0) | x, < O [[(po, wo)ll b,y ((po,10) € D(A)),

where || - || pa,) denotes the graph norm of A,.
Setting D, ,(2) = (Xq, D(Ag))1-1/pp for p,q € (1,00), we have

Lemma 3.3 ([12]). Let (p,q) € (1,00) and suppose that Assumption 3.1 holds. Then, for
any (po, up) € Dy, (), (p,u) = eat(pg, ug) is a unique solution to the system (3.4) under
the condition of (f,g) = (0,0). In addition,

10l 2, ((0.9), 12 (2)) + 12l L, ((0.9).53(2))
+ 100l 20,92, + [l 0,9),H200M)
< Cnpgo ™% ||(po, o) | Dy0(@)

for some positive constant C p 45, independent of S, where d, is the same constant as in
Lemma 3.2.

The following lemma is also proved in [12].

Lemma 3.4 (Maximal regularity). Let p,q € (1,00) and suppose that Assumption 3.1
holds. Then, for (po,ug) = (0,0) and for any f and g with

f € LP((07 S)qul(Q))7 g € Lp((ov S)qu(Q)N)v
the system (3.4) admits a unique solution (p,u) with
p € oH,((0,8), Hy () N Ly((0, 8), Hy(%2)),
u € oH,((0,5), Ly()™) N Ly ((0, ), Hy ()Y).
In addition, the solution (p,u) satisfies the estimate:
||5tﬂ||Lp((o,S),Hq1(m) + ||/)||Lp((o,5),Hg(Q))
+ 10|z, 09,0, @) + [0z, (0.9, 1200
< s (Il yc05113000) + I8l 209, Lo

for positive constants o and Cn 4.5, independent of S.

3.3 Local existence theorem

Let (p,q) € (2,00) x (N,00) and (pg,u9) € Byp(Q)*27(Q) x Bi,”"(Q)N with the
following conditions:

n-Vpo=0, up=0 onT, (3.5)



%O < po() 4 poo < 2000 (€ €Q), (3.6)

and let (p,,u,) = e’ (pg, ug) for v1 = 7, Yo = fi, ¥3 = v, and 74 = &~ 1. Then, setting
p =0+ p. and u = v + u, in (3.3), we observe that

(

0o +ydivv = F(o + p.,v+u,) in Q x (0,Tp),
v — v 'k Div(uD(v) + (¥ — 1) div vI + yAoT)

=~'G(0+ pe,v+u,) in Qx (0,T), (3.7)
n-Vp=0, u=0 onl x(0,Tp),
L (07 V>|t:0 = (07 O) in €.

To use the contraction mapping principle, we introduce the following notation:

e For T > 0, 0l = 0Z11~ X ()Z% with

OZ% = OH;((OvT)vH;(Q) ((OvT)ng(Q))v
L H?

0Z7 = oH,((0,T), Ly()") N Ly((0,T), Hy (™).
Here the norm || - ||,z, of ¢Z7 is given by
1o Wllozr = ol Ezo,m). 30 + 1Pz, 0. H32)

+ ||u||H,}((o,T),Lq(Q)N) + llullz, 0.1).52(0))-
e ForT'> 0 and r > 0,

oZr(r) = { (r.w) € oZr : |7, W)z <7

%O < 7(2,t) 4 pa(,1) 4 poo < 4poo for any (z,t) € Q x [O,T]}.

Let (1,w) € ¢Zp(L) for a suitable positive number L and for 7' > 0, and replace (o, v)
by (7,w) in the right-hand sides of (3.7). Then, by the maximal regularity stated in
Lemma 3.4, we can define a contraction mapping ® : ¢Zr(L) > (1,w) — (0,V) € ¢Zr(L)
for a sufficiently small T € (0, 7). We thus obtain by the contraction mapping principle
a local existence theorem in the maximal regularity class as follows:

Theorem 3.5. Assume that Q) is a uniform C? domain in RN, N > 2, with boundary T.
Let (p,q) € (2,00) x (N,00), and let R be an arbitrary positive number. Then there exist
positive constants L and T € (0,Ty) such that, for any (po,ug) € BSPQ/”(Q) x B2, 2/p(&2)
satisfying ||(p0,u0)||B (@) 2/r(@)x B2 P (@) < R with (3.5) and (3.6), the system (3.7)
admits a unique solutzon (0.v) on (0,T) in oZr(L).



4 Global solvability

Throughout this section, we assume

Assumption 4.1. (1) The domain Q is a bounded domain in RN, N > 2, with C3
boundary T'.

(2) P'(poc) > 0.

4.1 Linearization

Let oo = 1/ Pooy Voo = V/Poos a0d Yoo = pt P'(poo). Then we rewrite (3.1) and (3.2) as
follows:
0P + poo divu = —div(pu) =: F(p,u)

and
Ou — Div(peeD(0) 4 (Voo — fioo) divul + kApI) + 7. Vp
= p;ol{ — pdu— (p+ psc)u- Vu
+ Div(K(p + poc) = K0 p1) = (P'(p+ pc) = P'(pc)) Vi
=: G(p,u).
Thus we have achieved the following equivalent system of (1.1) with 7j = oc:
0P + poo divu = F(p,u) in Q x (0, 00),
Oru — Div(ptac D(u) + (Voo — foo) divul + KAPI) +75Vp = G(p,u) in Q x (0, 00),
n-Vp=0, u=0 onI x(0,00),
(p, 1) |i=0 = (po,ug) in Q.

(4.1)
4.2 Linearized problem
We consider a linearized problem associated with (4.1) as follows:
Op+ podiva= f in Q x (0, 00),
Ou — Div(pieoD(1) + (Voo — ploo) divul + KAPI) + 7. Vp =g in 2 x (0, 00), (42)

n-Vp=0, u=0 onI x(0,00),
(p.u)i=0 = (po,up) in Q.



To construct an analytic Cy-semigroups associated with (4.2), we set for g € (1, 00)

Hy () = {p € H,(Q): / pdr = o} Xy =Hy(Q) x Ly()N,

and also
Hz(Q) = Hj’(Q) N Hé(Q).

Their norms are given by

||p||H3(Q) = ||P||H;(Q)> | (p, u)HH}I(Q)qu(Q)N = ||P||HC}(Q) + HuHLq(Q)Na

ollnz) = llollrz0)-
In addition, an operator A, is defined by

Aq(p;) = (—poo divu, Div(paD(u) + (oo — fise) divul + £ApI) + 756 Vp),
with the domain D(A,):
D(A,) = {(p,u) e H}(Q) x H}(Q)" :n-Vp=0, u=0onT}.

Note that D(A,) C X, and A, : D(A,) = X,.
Now we introduce the generation of an analytic Cp-semigroup {e”*'},5¢ on X, and its
exponential stability. To this end, we consider the following resolvent problem:

AP+ poodiva = f in ()
A — Div(peoD(u) 4+ (Voo — fioo) divul + kApl) + 7. Vp =g in Q, (4.3)
n-Vp=0, u=0 onl,

where A is the resolvent parameter varying in C, 5 = {z € C: Rz > ¢} for 6 € R. By
[12] and a small perturbation method, we have

Lemma 4.2. Let g € (1,00) and suppose that Assumption 4.1 holds. Then there exists a
positive number 03 such that, for any A € Cp 5, and (f,g) € X,, the system (4.3) admits
a unique solution (p,u) € H3(Q) x HZ(Q)N. In addition, the solution (p,u) satisfies the
estimate:

(Al (o, w)lx, + [[(os W)l @) x 29y < Cngosll(f, 8) I,
or some positive consian N.g.03 thaepenaent o c +.03 -
ti tant Ci g5, independent of A € Cyg,

Let C, = C;y = {# € C: Rz > 0}. Combining Lemma 4.2 with a homotopic
argument? and the closed graph theorem then yields

2We refer e.g. to [3, Section 7].



Lemma 4.3. Let q € (1,00) and suppose that Assumption 4.1 holds. Then, for any \ €
C and (f,g) € X, the system (4.3) admits a unique solution (p,u) € H3(Q) x HZ(Q)N.
In addition, the solution satisfies the estimate:

Al (o @)lix, + (o @) k<2 < Cngll(f8) I,
for some positive constant Cy, independent of A € C,.
By Lemma 4.3 and the standard theory of analytic Cy-semigroups, we have

Lemma 4.4. Let g € (1,00) and suppose that Assumption 4.1 holds. Then A, generates
an analytic Cy-semigroup {e”1'}~g on X,. In addition, there there exist constants &, €
(0,1) and Cn 45, > 0 such that for any t >0

le* (po, uo)|Ix, < Chgsse™ [l (po, 1o) I, ((po, wo) € Xy),
)

e X
10 (po, o) 1, < Cvgsse™ ¢ [[(po, 1o)llx,  ((po,m0) € X,
(oo, o) lIbea,) (0, 10) € D(A,)),

Y

10" (po, o) Ix, < Civgsie
where || - |[pa,) denotes the graph norm of A,.
Similarly to [13], we have by setting D, ,(£2) = (Xg, D(Ag))1-1/pp

Lemma 4.5. Let p,q € (1,00) and suppose that Assumption 4.1 holds. Then, for any
(p,u) € Dyp(Q), (p,u) = eP'(py,ug) is a unique solution to the system (4.2) under the
condition of (f,g) = (0,0). In addition,

||664tatp||Lp((0,oo),H}z(Q)) + H€64tp||Lp((0,oo),Hg(Q))

+ €40l 0,00 o) + €20 10,00, H2(0)M)

< Ol (00:w0) o, 0 (2)

for some positive constant Cy, 45,, where 04 is the same constant as in Lemma 4.4.

Next, we introduce a maximal regularity with exponential stability for (4.2). To this
end, we start with the standard maximal regularity following from [12] with a small
perturbation method as follows:

Lemma 4.6. Let p,q € (1,00) and suppose that Assumption 4.1 holds. Then there ezists
a positive number 5 such that, for (po,us) = (0,0) and for any f and g with

e~ f € Ly((0,00), Hg(Q)),  e™'g € L,((0,00), Ly()Y),
the system (4.2) admits a unique solution (p,u) with

pe€H!

p,loc

((0,00), Hg(2)) N Ly oc((0, 00), H(€2)),

9



u € Hy((0,00), Lg(2)™) N Ly oc((0, 00), Hy (2)Y).
In addition, the solution (p,u) satisfies the estimate:

_55 —55
1™ 01pl| L, (0,000 13 () F €7 pll Ly ((0,00) 12 ()
+ lle"dul| 1, ((0,00),La(@)™) + le™*5 |1, ((0,00), H2(2)Y)
-5 —5
< CONyp,g,ss <||e 5tf||Lp((0,oo),H}Z(Q)) + [le 5tg||Lp((0,oo),Lq(Q)N))
for some positive constant Cn p 45 -
Similarly to [11], we can prove by Lemmas 4.4 and 4.6

Lemma 4.7 (Maximal regularity with exponential stability). Let p,q € (1,00) and sup-
pose that Assumption 4.1 holds. Then there exists a positive number dg € (0,1) such that,
for (po,ug) = (0,0) and for any f and g with

' f € Ly((0,00),Hy(Q)),  e™'g € Ly((0,00), Ly()"),
the system (4.2) admits a unique solution (p,u) with
p € oM, ((0,00), Hy () N Ly((0, 00), Hj(€2)),
u € oH,((0,00), Ly()™) N Ly((0, 00), Hy ()").
In addition, the solution (p,u) satisfies the estimate:

1% Orpll L, (0,00 my() + 1™ Il 0.0 1312
+ ||666tatu||Lp((O,OO)qu(Q)N) + ||656t11||Lp((O,oo)yHg(Q)N)
S CN,p7q756 (H€56tf||Lp((0,00)yHtlz(Q)) + H656tgHLp((0,oo)7Lq(Q)N)>

for some positive constant Cn pq.5;-

4.3 Global existence theorem

Let p,q € (2,00) x (N,00) and (pg,ug) € Dg,(2) with |[(po, uo)lp, ) < €1 for some

Att<

positive number g; € (0,1) determined below, and let (p.,u,) = e**(pg, ug). Then,

setting p = o + p, and u = v + u, in (4.1), we observe that

(

010 + poo divv = F(o + ps, v+ u,) in Q x (0,00),
v — Div(piee D(V) 4+ (Voo — ploo) div VI + KA0T) + Vo
=G(0 + ps, v+ u,) in Q x (0,00), (4.4)
n-Vo=0, v=0 onl x(0,00),
\ (0,V)]i—o = (0,0) in .

To use the contraction mapping principle, we introduce the following notation:

10



o (oo i=0ZL x ¢Z% with

0Z5 = oH,((0,

), H, () N Ly,((0, 00), Hy (2)),
OZc%o :OH;((Ov L

00
00), Ly(1)™) N Ly((0, 00), HF(2)™).
In addition, for ¢ > 0,

(o, Wl zs, = [1€”spll 1, ((0.00). 112 (2)) + €% Pl Ly (0000, 3 ()

+ ||eétatuHLp((O,oo),Lq(Q)N) + H€5t/?||Lp((o,oo),Hg(Q)N)-
e For 6 >0 and r > 0,

022 (1) = { T, W) € 0200 & ||[(T,W)|[gzs. <7, w=0onT,
P52 < (a,t) + pul, ) + po < Apac for amy (3,1) €0 x [0,00)}.
Let (1,w) € ¢Z° (g;) for a suitable positive number § € (0,1) and for g, € (0,1), and
replace (o, v) by (7, w) in the right-hand sides of (4.4). Then, by the maximal regularity
with exponential stability stated in Lemma 4.7, we can define a contraction mapping
D722 (e2) D (1,W) = (0,V) € ¢Z°(g2) for sufficiently small positive numbers &; and
£9. We thus obtain by the contraction mapping principle a global existence theorem in
the maximal regularity class as follows:

Theorem 4.8. Let (p,q) € (2,00) X (N,00) and suppose that Assumption 4.1 holds.
Then there exist positive numbers §, €1, and €3 such that, for any (po, ug) € Dy, (Q) with
(o, o) [lp, () < €1, the system (4.4) admits a unique global solution (o,v) in ¢Z3,(e2).
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