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Abstract

We examine a discrete-time optimal pair-trade execution problem with generalized cross—
impact. This research is an extension of [14], which consider the price impact of aggregate random
orders posed by small traders with a Markovian dependence. We focus on how a risk—averse large
trader optimally executes two correlated assets to maximize his/her expected utility from the final
wealth over a finite horizon. A stochastic dynamic programming modeling constitutes the basis
for the formulation of the optimal pair-trade execution problem. Then, under some regularity
conditions, the backward induction method of dynamic programming enables us to derive the
optimal pair-trade execution strategy and its associated optimal value function. Besides, we
reveal that the trading orders of each risky asset posed by small traders do affect the optimal
execution volume of both risky assets.

1 Introduction

A considerable number of empirical researches conducted in the last decade show that considering
the cross—impact of multi assets is important when constructing a portfolio or an optimal execution
strategy (e.g., [3], [36]). Along with these empirical researches, a multitude of theoretical studies
analyze the optimal portfolio liquidation strategies of multi assets for a single or multiple large
investors (e.g., [5], [9], [17], [18], [28]). These works are vulnerable from the practitioners’ point of
view.

This paper addresses an optimal pair—trade execution problem for a single large trader. We the
following situations which the institutional trader (or large trader) may face in a real marketplace:
Institutional traders manage their trading with multiple assets all or some of which are correlated
with each other to mitigate the price risk. The so—called ‘pair trading’ has already been discussed
in much empirical literature, clarifying the importance of trading multiple assets (e.g., in [15]). In
line with the significant insights from other researches, we consider an optimal pair—trade strategy
for an institutional trader. Also, the market model includes the effect of temporary, permanent,
and transient price impacts caused by both the large trader and the (aggregate) trading volume
submitted by small traders. This research is, to the best of our knowledge, the first paper to
incorporate the transient price impact as well as the effect of small traders’ submission into the
optimal pair-trade execution strategy.

The organization of this paper is as follows. Section 2 describes the market model and per-
formance criteria. A stochastic dynamic programming approach leads us to derive the optimal
pair—trade execution strategy. We present the closed—form solution of the optimal pair—trade exe-
cution strategy and its associated value function. Section 3 concludes.

*This work was supported by Japan Society for the Promotion of Science under KAKENHI [Grant Numbers
17K01255, and 19J10501].



2 Price impact model with cross—impact

In a discrete time framework ¢t € {1,..., 7,7 + 1},(T € Z4 = {1,2,...}), we assume that one
large trader purchases two risky assets in a trading market. It is also supposed that he/she has a
Constant Absolute Risk Aversion (CARA) von Neumann-Morgenstern (vN-M) utility (or negative
exponential utility) utility function with the absolute risk aversion rate v > 0.

2.1 Market model

For each asset i € {1,2} =: Z, he/she must purchase Q'(€ R) volume by the time T + 1. Let
i (€ R) for i € T represent large amount of orders of asset i submitted by the large trader at time

te{l,...,T} = T. Then, we denote by @: the remained execution volume of asset ¢, that is, the
number of shares remained to purchase by the large trader at time t € {1,...,7,T+ 1}.1 From this

assumption, we have @@1 =9 @ZT =0 and @iﬂ = @1 — ¢! for i € 7. In a stacked form,
—1 =1
Qi = (%H) ~Q - = (95 qg) (€®), t=1,...T (21)
Qis1 Q@ —q
with the initial and terminal conditions:
= QF — 0
Q- (3}) R @ra-()) ~o(er 22)

Then, the (aggregate) trading volumes submitted by small traders at time ¢t € T are assumed to
have a Markov dependence described as follows:

Vo = 0;

v " v (2.3)

Vt+1|Vt NNR2 (at+1+bt+1Vt,2t+1), -l(;:O,...7iZ_7—17

where
1 11 712 11 12
ag 2 by by 2x2 v oy~ O¢ 2x2

= R*;: b; = R="#; = R“™%, 2.4
ay (ﬁ) € k% t (bfl bgz) € ; t (Utu gtzz> € (2.4)

Note that af, b}, and ¥} are deterministic functions of time ¢. The dynamics of v; can be rewritten
as follows:
Vo = O;

(2.5)
Vitl = (a;’+1 + b2’+lvt) + a-;;lwt-i-la t= 17 v 7T - 17

where w; ~ Ng2(0,Ip) for all t € T and 0}, ,(6,;)" := I} is a Cholesky decomposition of T} for
all t € T. In the rest of this paper, I indicates the 2 x 2 identity matrix.

Remark 2.1 (Effect of bY). Eq. (2.5) becomes a covariance-stationary VAR (1) process when all
values z satisfying |Io — zb}| = 0 lies outside of the unit circle. Equivalent conditoins are:

Tr (bY) = /Tr (b})? — 4 b
2|by|

2] = 1, (2.6)

where for any squared matrix A € R™*"™ |A| stands for the determinant of A and Tr(A) is the
trace of A defined as a map from R™*"” to R such that

aip -+ Qip n
Tr(A)=Tr| ¢+ .. = |:= Z @i (2.7)
i=1

an1 - Ann

!The positive ¢} for t € T stand for the acquisition and negative ¢ the liquidation of the risky asset € Z. This
setting allows us to establish a similar setup for a selling problem of a large trader.



Moreover, if the following determinant: |Io — b}| is zero, then the Eq (2.5) contains at least one
unit root. For the details, see, e.g., [21]. The continuous—time version, that is, the multivariate OU
process is discussed in [30].

We assume the market price (or quoted price) of the risky asset ¢ € Z at time ¢t € {1,...,T,T+1}
is set as P/. Then, the execution price of the asset i becomes ]3,} since the large trader submits a
large number of orders, influencing the asset price at which he/she execute the transaction. In the
rest of this paper, we assume that for each asset i € Z submitting one unit of (large) order at time
t € T causes the instantaneous price impact denoted as A\i(> 0). We also assume that the aggregate
trading volume posed by small traders also has some impact on the execution price. n§(> 0)
represents the price impact per unit at time ¢ € 7 caused by small traders for asset i € Z. The
(aggregate) trading volume submitted by small traders at time ¢ € T is assumed to be a sequence
of random variables v;, which has a Markovian dependence and follows a normal distribution with
the following mean and variance:

In the sequel of this paper, the buy—trade and sell-trade of a large trader are supposed to
induce the same (instantaneous) linear price impact.? We consider the cross-impact caused by the
order submission of both the large trader and small traders. From this assumption, we define the

~

N 1
execution price, Py := %2 , in the form of a linear price impact model as follows:
t
f’t = Pt+ (Atqt —|-K,tVt>, t= 1,...,T. (28)
where
pl AL 2 )l g2

and )\ij represents the cross—impact of asset j’s order execution on asset ¢ per unit caused by the
large trader, and k; caused by small traders at time ¢ € 7. [36] show that, in order for the
market not to allow the dynamic arbitrage opportunities, the cross-impact must take the form of a
symmetric matrix. From this viewpoint, we have the following assumption.

Assumption 2.1. A; and k; are symmetric for all t € T .

Adding to the above assumption, we restrict our analysis of the price impact with cross-impacts
on the following case.

Assumption 2.2. A; and k; are positive definite matrices for all t € T.

Remark 2.2 (Symmetricity of a positive definite matrix). We can always regard a positive definite
n X n matrix as a symmetric one since for each positive definite matrix A € R™*™ a symmetric and
positive definite matrix A*(:= 3 (A+AT)) such that x"Ax = x"A*x.

Remark 2.3 (Diagonally dominant matrices). For a complex— (or real-)valued n x n matrix A, we
say that A is a strictly diagonally dominant matrix if

il > ) gl (2.10)
J#i

for all i € {1,...,n}. Referring to this definition, we can replace the Assumption 2.2 as follows.

2This assumption would be inconsistent with the situation observed in a real market. [7] and [8] conduct a linear
regression of price changes on net order—flow using trading data obtained from Nasdaq to estimate the permanent
and temporary price impact. Then they reveal that assuming linear price impact is compatible with the real stock
market and that the price impact caused by both buy and sell trades are deemed as same from a statistical analysis
point of view.



Assumption 2.2°. A; and k; are strictly diagonally dominant matrices.

If A; is a strictly diagonally dominant matrix, regardless of the symmetricity of the matrix, the
fact that A} > 0 and

gl = AP = AP > AP = P AT > 0 (2.11)

reveals the positive definiteness of A¢, and the same holds for k;. If we weaken the assumption 2.3 to
weakly diagonally dominant matrices, then both A; and k; become positive semidefinite matrices.
Moreover, we can further say that if A; is a strictly diagonally dominant matrix, then it also becomes
a generalized diagonally dominant matrix. For more detail, see, e.g., [37].

Remark 2.4 (Positive definiteness of the price impact coefficient matrix). We can interpret the
assumption above as follows. Consider the case \} = A2 = \; (> 0) and \}2 = X} for all t € T.
Then, using & € R, the characteristic equation results in

A — €| =0 = (A — )7 = (\)* =0, (2.12)
and solving the above equation with respect to £ yields the eigen value:
€= £ A (2.13)

By the assumption A; > 0, the condition A\; = \f > 0, i.e., A} = A\? > |)\%2| must hold for A; to be
a positive definite matrix for all ¢ € 7. This means that the price impact of the asset i € {1,2} on
the execution price on asset j(# i) € {1,2} must be less than that on asset ¢ itself, which is rather
a realistic situation considering the real marketplace.

Remark 2.5 (An extension from two assets to n assets (n > 3)). We can extend this model to the
case of n risky assets (n > 3). Consider, for example, the case that a large trader trades three risky
assets and the price impact caused by the large trader is the following form:

A0 AP
A=10 X 0|, (2.14)
MLooo A

meaning that the execution of asset 1 causes a cross impact on the priced of asset 3 and vice versa,
and no cross impacts exist between assets 1 and 2 as well as assets 2 and 3. Then, by a similar
examination as in Remark 2.2 with the assumption A} = A2 = A} = A, for all t € {1,...,T} and
A2 = A = X!, the eigenvalue of A, denoted by &, becomes &€ = A, A\s = A¥. Thus, the condition
M=22=\> |)\%3| is the necessary and sufficient condition for A; for all ¢ € {1,...,T} to be
positive definite.

We subsequently define the residual effect of past price impact at time ¢ € T, represented by
R; € R?, which characterizes the discounted sum of past transient price impact. Many existing
researches, conducted from both theoretical and empirical viewpoint, highlight the significance of
the transient nature of price impacts (e.g., [6], [31]). By means of the following exponential decay
kernel function G: R — R2*2:

—pt
G(t) i=e Iy =e 2 = (eo ef)pt) L ot=1,...,T, (2.15)

where p (€ [0,00)) stands for the deterministic resilience speed, we formulate the residual effect of
the past orders posed by both the large trader and small traders.

Remark 2.6. [1] show that the decay kernel G(t): [0,00) — R™*™ for multiple (n) risky assets
with cross—impact must satisfy



1. nonnegative matrix for all ¢ € [0, 00);

2. for all x € R™ the function t — x " G(t)x is nonincreasing;

3. for all x € R™ the function ¢ — x ' G(t)x is convex;

4. commuting, i.e., G(t)G(s) = G(s)G(t) for all t € [0,00).
Eq. (2.15) clearly satisfies all the conditions.

Remark 2.7 (Extension of deterministic resilience speed). We can extend the exponential decay
kernel function in several ways. For example, the time dependency for the resilience speed, i.e., py,
is consistent with much of empirical analysis. Another extension includes different resilience speeds
for each asset, which [38] considers as follows:

G(t) =e " :=exp { <_§1t —2%) }

— (p't)*
Z k! 0 e_plt 0
_ | k=0 o o | = o | € R%*2, (2.16)
0 (p7t) 0 e
2
k=0
, pt 0
where p* for ¢ € Z is the deterministic resilience speed of asset ¢ and p := ( 0 p2>'
The dynamics of the residual effect of past price impact Ry is given as follows:
R; = 0;
t
Ris1 =Y Ak (Agqr + spvi) e 7R
k=1
t—1
=Py Ay (Agar + rpvi) e P E A (Mg + mpvi) e P
k=1
=e P[Re+ Ay (Arqr +keve)], t=1,...,T, (2.17)
ol ql2
where A; := <a2tl 052 > represents the price impact coefficients representing the temporary price
t t

impacts with cross—-impact. Eq. (2.17) indicates that R; has a Markov property in this settings,
which stems from the assumption of the exponantial decay kernel. For simplicity, we assume that
A, is symmetric.

Furthermore, we define a sequence of independent random variables &; at time ¢t € T as the
effect of the public news/information about the economic situation between ¢ and ¢ + 1 since some
public news or information about the economic situation affect the price. &; for t € T are assumed
to follow a bivariate normal distribution with mean p¢ € R? and variance £¢ € R?*2 ie.3

£~ Ngo (15,55), t=1,....T. (2.18)

The ‘fundamental price’ at time ¢ € 7, denoted by P{ , must be carefully constructed. The fact
that the residual effect of the past execution dissipates over the course of the trading horizon allows
us to define P, — Ry as the fundamental price of the risky asset. We assume that the permanent

3In the rest of this paper, we suppose that the two stochastic processes, w; and &; for t € T are mutually independent
for simplicity.



1 pl2
price impact is represented by By (Axqx + ki vy) where By := (%1 52
t t

symmetric for all ¢ € T for simplicity. By the definition of &;, we can set the fundamental price
P{ := Py — R; with a permanent price impact as follows:

). We assume that By is

P/, =P —Rip
=Py — Ry + By(Avqs + keve) + &
:P{+Bt(AtQt+KtVt)+Et, t= 1,...,T. (219)

This relation indicates that the permanent price impact caused by large traders and small traders
and the public news or information about an economic situation are assumed to affect the funda-
mental price. This assumption also reveals that the permanent price impact may give a non—zero
trend to the fundamental price, even if the mean of &; is zero vector for all t € 7. According to Eq.
(2.8), (2.17), and (2.19), the dynamics of market price are described as

Pii1 =P+ (Rep1 — Re) + Be(Arqe + keve) + &4
= Pt - (1 — e_p)Rt + (e_pAt + Bt) (Atqt + K,tVt) + &g, t= 1, N ,T, (220)
Remark 2.8. In this context, B, (Ayq; + k¢vy) , Ay (Arar + £0ve), and e P Ay (Ayqp + K1vy) Tepre-
sent the permanent impact, temporary impact, and transient impact, respectively. Moreover, if

p — 00, the residual effect of past price impact becomes zero for all t € T since Ry = 0 and from
Eq. (2.17)

lim Rip1 = lim e [Rt + A (Atqt + Rtvt)] =0, t=1,....T, (2.21)
pP—00 pP—00
and therefore,
Pt+1 = Pt+Bt (AtQtJrfitVt) +Et, t= 17' "7T7 (222)

that is, we have a permanent impact model.

In the sequel of this paper, we assume the following regularity condition holds.
Assumption 2.3. A; (In — (e7?A; +By)) + (I — (e 7P A + By)) A; is positive semidefinite.
Remark 2.9. The assumption above is equivalent to the following conditions:

LM (L=ePay = Bf) + X (L —e7Pai = B7) — 20 (e Py + %) 2 0,

2
2 T (1 e Poi — 5) — N2 (77l + 51%)} 2 [ (%ol + 41%))°.
i=1

Both conditions imply that the cross—impact must be small enough for the optimal execution
strategy to exist. A close analysis of condition 1 reveals that A (1 —e Paj —3f) for i € T is
positive (except when p = 0) if the temporary and permanent price impacts are proportional (e.g.,
considered in [33]), i.e., B :== 1 — ol for all t € T, since in this case

l—ePaj—pBi=1-ePa;— (1—a}) =af (1-e7") >0, (2.23)
holds for all p € (0, c0).
Remark 2.10 (Alternative assumption). We can replace Assumption 2.3 as follows.
Assumption 2.3’. A; (Io — (e"?A; + By)) is normal in the sense of [29], i.e.,
T T
{Ac(l= (A +B1)) b A (T~ (7Ar + BY)) = A (I — (c7°Ar + Br)) {As (I - (*A + By)) | .
(2.24)

This statement follows from Theorem 3 of [29]: If A; (Io — (e7?A;+ By)) is normal, then
A (I — (e7PA + By)) is also positive semidefinite.

From the definition of the execution price, the wealth process W, (€ R) evolves as follows:

Wt+1 = Wt — 13;'% = Wt — {Pt + (Atqt =+ I‘a‘,tVt)}T q¢, t = 1, Ce. ,T. (225)



2.2 Formulation as a Markov decision process

In a discrete-time window ¢ € {1,...,T,T + 1}, we define the state of the decision process at time
te{l,...,T,T + 1} as b-tuple and denote it as

St = (WtaPtaGtaRtavt—l) € R x RQ X RQ X RQ X R2 =: S. (2.26)

For t € T, an allowable action chosen at state s; is an execution volume q; € R =: A so that the
set A of admissible actions is independent of the current state s;.
When an action q; is chosen in a state s; at time ¢t € T, a transition to a next state

St+1 = (Wt+1;Pt+176t+1aRt+1th) €S (2-27)

occurs according to the law of motion which we have precisely described in the previous subsection.
We symbolically describe the transition by a (Borel measurable) system dynamics function h; (:
SxAx(RxR)— 9):

St4+1 = ht(staqta<wt7€t))7 t= 17"'3T' (228)

A utility payoff (or reward) arises only in a terminal state sp41 at the end of horizon T+ 1 as

o (2.29)
—00 if Qryq # 0,

where v > 0 represents the risk aversion. The term —oo means a hard constraint enforcing the large
trader to execute all of the remaining volume Q at the maturity 7', that is, g7 = Q.

If we define a (history—independent) one—stage decision rule f; at time t € T by a Borel mea-
surable map from a state s; € S = R® to an action

—exp{—W- if Qp.q, =0;
9r+1(87+41) ::{ p{—"Wri1} Q141

qt = ft(St) cA= R, (230)
then a Markov execution strategy 7 is defined as a sequence of one—stage decision rules
wi=(f,..., 8, ..., 7). (2.31)

We denote the set of all Markov execution strategies as IIy;. Further, for ¢t € T, we define the
sub—execution strategy after time ¢ of a Markov execution strategy w € IIy; as

T 1= (ft,...,fT>, (232)

and the entire set of m; as .

By definition (2.29), the value function under an execution strategy m becomes an expected
utility payoff arising from the terminal wealth Wry; of the large trader with the absolute risk
aversion -y:

Vi [s1] = ET [9T+1<3T+1)|31] =ET [ —exp{ —YWri1}- LGy =0y T (=20) - 1@“17&0}‘81],
(2.33)

where 14 is the indicator function of the event A and, for ¢ € {1,...,T}, ET is a conditional
expectation given a condition at time ¢ under .
Then, for t € {1,...,T,T + 1} and s; € S, we further let

‘/;TI' [St] = E;T [gT+1(3T+1)|3t} = ]E;T [ - exp{ — 'YWT+1} . 1{§T+1:0} + (—OC) . 1{@T+17’50}‘St} (234)

be the expected utility payoff at time ¢ under the strategy 7. It should be noted that the expected
utility payoff V™ [st] depends on the Markov execution policy m = (f1,...,f;, ..., fr) only through



the sub—execution policy m := (f;, ..., fr) after time ¢. The Markov property of residual effect (and
hence the price dynamics) and the path independency of the large trader’s utility at the terminal
period makes the optimal value function V; the function of decision process (W, Pt,ﬁt, Ry, vio1).
Thus, from the principle of optimality, the optimality equation (Bellman equation, or dynamic
programming equation) becomes

Vi[We, Py, Q. Ry, vi—1] = sup E [Vt+1 (Wit Prg1, Quyys Reg, v ‘Wt,Pt,Qt,Rt,Vt—l] , t=1,...

q+€R?2
(2.35)

Therefore, we obtain the optimal execution volume qj for ¢ € 7 which attains V; from the maturity
T by backward induction method (of dynamic programming) in terms of time t¢.

2.3 Optimal pair—trade execution

The optimal dynamic execution strategy  is acquired by solving the above equation (2.35) back-
wardly in time ¢ from maturity T. Then, we obtain the following theorem.

Theorem 2.1 (Optimal Execution Strategy and Optimal Value Function). Under a set of regularity
conditions,

1. The optimal execution volume at time ¢ € T, denoted as qf, becomes an affine function of
the aggregate volume submitted by small traders at time t — 1, v;—1, as well as the remaining
execution volume Q, and the cumulative residual effect R;: that is,

q;k :at+bt6t+cth+dtvt_1, t= 1,...,T. (236)

2. The optimal value function V; [st] at time ¢t € {1,...,T,T + 1} is represented as a functional
form shown as follows:

— — T, = — T
Vi [We, Py, Qi Ry, vi—1] = —exp { - ’Y[Wt ~-P/Q,+Q, G:Q,+H/Q, + Q, LR,

+R/JR; + L/ R + G:Mtvt—l + RNy + v Xyvi1 + Y, vy + Zt} }, (2.37)

where a;, by, ¢, dy; Gy, Hy, I, I, Ly, My, Ny, Xy, Yy, Zy for ¢ € {1,...,T,T + 1} are deterministic
functions of time ¢ which are dependent on the problem parameters, and can be computed back-
wardly in time ¢ from maturity 7'

Proof. See Appendix A. O

As the above theorem shows, the optimal execution volume qf for ¢ € T depends on the
state s; = (Wi, Py, Q;, Ry, vi—1) of the decision process through the total volume submitted by
small traders at the previous time v;_; in addition to the remaining execution volume Q, and
the cumulative residual effect R;, and not through the wealth W; or market price P;. Further,
by the definition of the residual effect, the optimal execution volume qj for ¢t € T includes a
nondeterministic term (random variable) through R; and v;_1. Thus, we have the following facts.

Corollary 2.1. If the aggregate trading volumes submitted by small traders, v, for ¢t € T are
deterministic, the optimal execution volumes qy at time ¢t € 7 also become deterministic functions
of time. This fact means that the optimal execution strategy is one in a class of the static (and
non-randomized) execution strategy.

Not only does our analysis show that the optimal execution strategy becomes a stochastic one
but also it reveals that the orders of asset 1 posed by small traders directly affect the execution
volume of both assets for the large trader and vice versa. This is our contribution to the field of
the optimal execution problem.



Corollary 2.2 (In the case without transient price impact). If we consider only temporary and
permanent price impact, the optimal execution volume for the large trader at time ¢t € 7 becomes

a; = a; + b Q; + vy (2.38)

In this case, the aggregate trading volume of each asset posed by small traders still directly affects
the optimal execution volume of the large trader. However, if we further assume that v; has no
Markovian dependence and simply follows a bivariate normal distribution;

ve ~ Ngz (17, 5Y), (2.39)
then the optimal execution volume of the large trader at time ¢ € T takes the form as follows:
qi = a; +bQ,, (2.40)

meaning that the aggregate trading volume posed by small traders do not affect the optimal ex-
ecution strategy even if we incorporate the price impact caused by small traders’ trading orders.
Therefore, taking into account the transient price impact is significant when we consider the effect
of price impact caused by small traders.

2.4 In the case with target close orders

In this subsection, we consider an execution model with a closing price. The time framework
te{l,...,T,T + 1} is same in the model mentioned above. However, we add an assumption that
a large trader can execute his/her remaining execution volume at time 7'+ 1 , Q. 11, with closing
price Pry1. We further assume that the trading at time T+ 1 impose the large trader to pay the
additive cost x741 per unit of the remaining volume. As stated in the last section, we have the
following proposition.

Theorem 2.2 (Optimal Value Function and Optimal Execution Strategy in the Case with Target
Close Orders). Under a set of regularity conditions assumed in Theorem 2.1 and the following
additional assumption:

Az (&~ Tr) + {Ar (I = T0)} + (xre1 + X740 ) (2.41)
is positive definite,

1. The optimal execution volume at time ¢t € {1,...,7T,T + 1}, denoted as qf, becomes an affine
function of the aggregate volume submitted by small traders at time ¢ — 1, v;_1, as well as
the remaining execution volume Q, and the cumulative residual effect Ry: that is,

q =a' +b/Q, +cRi+div, .y, t=1,...,T,T+1. (2.42)
2. The optimal value function V; [st] at time t € {1,...,T,T + 1} is represented as follows:

rayY rayY =T * Yy * 1y =T *
Vi[Wi, Py, Qp, Re, v ] = — exp{ - ’V[Wt -P/Q,+Q,G/Q,+H;'Q, +Q, /R;

* * =T * * * * *
+ R/ IR+ Ly Re + Q) Miveot + RN Ve + v Xivies + Y7 vy + 2|, (2.43)

where af, b}, cf,dy; Gy, Hf, I, Iy L, My, Ny, X5, Y, Zf for t € {1,...,T,T + 1} are determin-
istic functions of time ¢ which are dependent on the problem parameters, and can be computed

backwardly in time ¢ from maturity 7.

Proof. See Appendix B. O



3 Conclusion

We constructed a two assets optimal execution problem of a single large trader in a (finite) discrete—
time framework. The large trader maximizes the expected Constant Absolute Risk Aversion
(CARA) von Neumann-Morgenstern (vN-M) utility that arises from his/her wealth at the end of the
trading epoch in a market with small traders. By formulating a generalized price impact model, the
backward induction method of dynamic programming based on the dynamic programming principle
permitted us to derive the optimal pair-trade execution strategy. The most important result which
emerged from this research is as follows: the aggregate volume of small traders has both direct
and indirect impacts on the execution strategy of the large trader. Moreover, the small traders’
orders do affect the execution volume of both assets. The simulation—based analysis is left for this
research. Future research includes the continuous—time analog of this research and optimal VWAP
strategy in this setting.
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Appendix
A Proof of Theorem 2.1

We derive the optimal execution volume qj at time ¢ € {1,...,T} by backward induction method
of dynamic programming from the maturity 7" via the following steps.

Step 1 From the assumption that the large trader must unwind all the remainder of his/her position
at time t =T,
Qri1=Qr—ar=0, (A.1)

must hold, which yields Q = qr. Then, for t = T,

Vr[sr] = sup E|Vry [ST—HHST}
qreR?
= sup E Vi [Wrs1, Pra1, Qrog, Reg, vr ‘WT, Pr,Qr, Ry, VT—l}
qreR -
= sup E| —exp{—7Wri1} ‘WT, PT;QTaRT;VT—l]
qreRd -
= SupdE - G‘Xp{ [Wr — [Pr+ (Arar + &rvr)) ar } ’WT7 Pr,Qr, Ry, v 1]
qreR
S _T JE—
= —exp {—“/ [(Wr —PrQp — QTATQT]}
% E[exp {3vi#1Qr | |[Wr. Pr. Q. R, vr1]. (A2)

. = =T . . .
Using the fact that v;n; Qr = Qrkrvr(€ R) and the moment-generating function with respect
to v,

_T J—
E [GXP {’VQTKTVT} ’WT, Pr,Qr, Rr, VT—I}
—T v v 1/ =1 v =T \'
= exp {'YQT"T (ar —brvr_1) + 3 ('YQTK/T> X7 ('YQTK'T> } ; (A.3)
Eq. (2.35) becomes
R _T JE—
Vilsr] = —exp {~[Wr - PIQr - QrArQy] |
~7T v v 1 ~7T v ~7T T
X exp {VQT'@T (ap —brvr_1) + 3 <7QTKT) X7 (’YQTKT) }
TO. - O O T0.. - O
= —exp { - [WT —PrQr +QrGrQr + HrQp + QTMTVT—I} }, (A4)
where we have used the fact that Q;K,Ta)} = (a})—r k7 Qp and

1
Gr:=—Ar— Evnszm;(e R2%2);
Hj = — (a}) | sp(e R?);

Mr := krb¥.(€ R?*?). (A.5)

Note that G is negative definite (by Assumptions 2.1 and 2.2).
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Step 2 Fort =T — 1, we have

Vi1 [sr—1]

= Sup E -VT [ST] ’ST—I-
qr-1€R?  * -

r r — T = — T
= sup E| —exp { —y|Wr = P1Qr + QrGrQp + H1.Qp + QTMTVT—I} HST—I]
qr-1€R - -

r r T
= sup E|- GXP{ — | Wr_1 = {Pr_1 + (Ap—1qr—1 + K7-1vr-1) ) ar—1
qr-1€R?  * -

—{Pr_1 — (1 —e)Ry_1 + (Ar_1qr—1 + kr—1vr—1) (e PAr_1 + Bp_1) +!:‘T—1}T (Qr_1 —ar-1)
+(Qr_y — 01T—1)T Gr(Qr_1—ar-1) + (Qr_; — 01T—1)T MTVT—l} HST—l]

= sup —exp { - '7[(1;—1 {A;q {(T2 —H7-_1)} - GT} ar-1 + Qr_y {A;—1 {(T2 —Hp_1)} - 2GT} qr-1

qr-1€R

—(1—e")Ryqr1 —Hj a7

+Wro1 —Pro1Qp_y +6;—1GT6T—1 +H; Qp o+ (1— e_p)Q;ART—J }

xE [exp {’Y [a}_l {(XIy —Mpr_1)Kr—1 +Mrp_1} + 6;_1 (Mp_1k7-1 — MT)} VT_1}‘ST_1]

xE [GXP {’Y (Qr_1 —ar-1) 5T—1HST—1] ; (A.6)
where Il := e PAp_1 + Byr_1. Using the moment generating function, we obtain

1. First expectation in Eq. (A.6):

T
E [GXP {W [Q¥—1 {Xy —pr_1)kr—1 +Mrpr_1} + Qp_y MMr—167-1 — MT)} VT—1HST—1]
T
= exp {7 [Q¥_1 {Xy—Tr1)kr—1 +Mr_1} 4+ Qp_y Tk — MT)] (af_; + by _vro2)
1 —T v
+ 5“/2 [Q¥_1 {(Xg —TIp—q) kr—1 + Mr_1} + Qp_y 71671 — MT)] T-1
T . =T . T .
Ar_1 {(Io —Ir_1) kr—1 + Mr_1} + Qpr_y Mr—167-1 — M7) ; (A7)

2. Second expectation in Eq. (A.6):

E [exp {’y (QT_1 - O_IT—1) 5T—1HST—1]

1

= €exp {“/ (6T-1 - QT—l) #%_1 + 572 (QT—l - qT—1)T 2%_1 (6T-1 - CIT—1) } (A.8)

Therefore, substituting Eq. (A.7) and (A.8) into Eq. (A.6) and rearranging results in

V1 [sr-1]

~ _T —_
= SUPR —exp { - 7[ —ar 1 Qr_1qr_1 + (QT_16T—1 + R} (Ep 1+ Ve @+ ‘I’}_1) ar-1
qr-1€

— —T 1 1 —
+ Wi —Pp 1 Qp 1 +Qpy {GT — 37 {Or_1k7—1 — Mr} By {Ir_ 67— — M7} — 572%_1} Qr_4
v T N A AT
+ {H; —(ay_1) {Or 1k — My} — (u7_1) } Qr_1 +(1—e ") Qp_ 1Ry

~Qp_y {Tlp_ 1k — M7} b¥_1VT_2] }, (A.9)
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with the following relations:

~ 1
Qr_1 = 5 (QT_1 —I—Q}_l)
1 1
= §AT—1 {(Xy —Ip_1)} + 3 {(Ar_ 1 {7 1)}} " — Gy

1 1
+ 57 {(Ig =My ) kp_y + My} SY  {(Io — Oy ) Koy + Mg} + 572'?}_1 (€ R#*%);

Or 1= My Ar 1 —2Gp — vy {llp_1kp 1 — Mz} S¥_ {(Ty —Hr ) kr_ g + Mg}
+75% 4 (€ R2X2>;

Br_q = —(1—e ), (€ R¥*?);
Q71 =~ (blf—1)T {(Iy =T 1)k + Mg} (€ R?*?);
Uiy = —Hj — (af_y) {(L—Tro)kroa+Mr} ' + (g5_,) " (€ RV, (A.10)

By the assumption 2.1, Qp_; becomes a (symmetric and) positive definite matrix. Finding the
optimal execution volume qj._; which attains the supremum of Eq. (A.6) is equivalent to finding
the one which yields the maximum of the following function K7_1(qr—1) defined as

~ T —
Kr1(ar-1) == —a7_1Qr1ar-1 + (QT_leT—l + R Er 1+ Vi@ + ‘I’;_1> qr-1
Fay -~ 1 v T 1 & raY
+Wr 1 —=Pra1Qp_; + Qpr_y {Gr — 57 {IIp k71 — My} By {IIp k71 — Mp} — 572T_1 Qr_,

+ {H; - (a¥_1)T {Ty1kr1 — My} - (#%—I)T}QT—l +(1-e")Qr Ry
+ Q7 {llr_1k7—1 — Mz} by vy, (A.11)

since both Eq. (A.6) and Eq. (A.11) are concave functions with respect to qr—;. Thus, by
completing the square of K7_1, we obtain the optimal execution volume q7_; as

ar_; = QEil {6;_1QT_1 + E;_lRT_1 + @;_1VT_2 + ‘I’T—l} (A.12)
(=tar—1 +br_1Qr_; +cr1Ry_1 +dp_1vrs).
Thus, the optimal value function at time T'— 1 becomes a functional form as follows:

Vir_1[s7-1]
_ _ |:W _ PT raY =T G raY T =T T
= —exp Y|\ Wr-1 7-1Qr 1+ Qr_1Gr1Qpr_ 1 +Hyp 1Qp 1 + Qr It 1Rr—1 + Ry _Jr—1Rp

—T
+ Ly Rr 1+ Qp_Myr_yvp_ 11 + Ry Ny vy o+ vi o X 1vr_o + Yo vr o+ ZT—l] },
(A.13)

where
: L m Y {1 T_ Lo Lor 101 el .
Gr_1:=Gr — 5”/{ r-1kr—1 — M7} ST {Ir k71 — Mr} — 3781+ 0711077, 07
v AT T T 1 =
H¥—1 = H; - (aT—1) {Mr_1k7—1 —Mr} — (l‘eT—1) + §‘I’¥—1QT£19;—13
_ 1 ~ 1 - 1_ ~ 1 - 1 ~ 1
IT_1 = (1 — e p)IQ + §8T—IQT£1-:;E_1§ JT_1 = Z:‘T—lng—l:;—l; L;—l = 5@;_197}_1:;_1;
1 ~ 1 ~
Mr_y:={llr_1k7—1 — M7} by | + §9T—1QT11‘I>;_1; Np_1:= §=T—1QT£1‘I);_1;

1 ~ 1 ~ 1 ~_
Xy = Z@T_lnTEIQ;_l; Y, = §W¥_19T31¢¥_1; Zp_y = Zw;_lnTil\pT_l. (A.14)
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Step 3 Fort e {T'—2,...,2}, we can assume from the above results that, at time ¢+ 1, the optimal
value function has the following functional form:

— T — — T
Vig1[st41] = —exp { - W[Wt+1 —P Qi + QG Qu +H Qo + QT Ret + R TR

—T
+ LtT+1Rt+1 + Qi Mip1ve + RtT+1Nt+1Vt + VtTXt+1Vt + YtT+1Vt + Zt+1] } (A.15)

Then, we can obtain the following calculation by substituting the dynamics of Wy, P41, Qt 1Ry, v
into the equation above:

Vilsi] = Suﬂgz —exp { - ’Y[q: (_At + LA + Gy — e "I AAy + G_QpAtTAtTJtHAtAt) qt
qi€

n [Gf (~ILA; — 2Gi1 + e T AdAy) + R) (—(1 — e )y — e Ty + 2e7 200, Ay
+ (—H:H + e_pL,L_lAtAt) }Qt + Wi — P:Qt + Q;FGtHQt + H;—HGt
Q, (1—e")a+e L) Ry +e 2RI Ry + ¢ PLL Ry + Zm] }
x E [exp { — [vtTétvt + <q;r5t +Qm+R/ 0, + ¢;r) Vt} }‘st}
x E [exp {'y (Gt — qt)TetHSt} , (A.16)
where II; := e ?A; + B; and

& = e Pr[ ATy 1 Avks + e PR AN + Xpp (€ RP?);

b= — (I —Iy) Ky — e Ly Agky + 20 A AT 1 Ay — Mgy + e PAL AN, (€ R);
ne = Ik + e PLi1 Agky + Mg (€ RP?);

0; ;=2 2T 1 Ak + e PNy, (€ R?X?);
¢ =e PLL A + Y, (€ RV,

The direct calculation leads to the following equalities:
1. First expectation in Eq. (A.16):

E [GXP{ - [VtTftVt + (QtTtst +Qm +R/0; + ¢tT> Vt] }’«S’t}
) 1 e .

S ey {2 @y + v T {07 07 @m0 - @)} @y + v
|2

—T . _
~2y[a/ 8+ Qme + R0+ 0! | ()71 (B (@) +bYvir)

£ ol Qe R0+ 0 | (B0 a6+ Qv R0, 10! |} (A7)
2. Second expectation in Eq. (A.16):
E [eXp {7 (Gt - Qt) 5t} ‘St}

_ 1 _ _
= exp {7/(Q —ar) f + 572 (@ — ) ZF(Q —a) }- (A18)

To derive Eq. (A.17), the following lemma has been used. Although this lemma is a straightforward
result, we here note the result as a lemma for this paper to be self-contained.
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Lemma A.1l. For an n—dimensional normally distributed random variable X with mean py € R"
and variance ¥ € R™*"™ (where X is a symmetric positive definite matrix), we have

=72 1
]E[exp {STX + XTVXH = % exp {5 {(u ) L)t et — uTE_ly] } . (A.19)
Y2
where s € R", V € R™" u* := u+ ¥s and ¥* := ¥ — 2V, under the assumption that ¥* is a
non-singular matrix. Remind that when V = 0, the result is consistent with the one obtained from
the moment generating function.

Proof. We can assume, without Tloss of generality, that V is symmetric, since XTVX € R we have
a symmetric matrix V(:= YY) which satisfies XTVX = XTVX even if V is not symmetric.

Define x := (x1,...,2,)" € R”. Then, direct calculation yields
E [exp {STX + XTVX}]
' 1 1
= / exp {STXJFXTVX}—l exp{——(x—u)—rﬁ_1 (X—p,)}dx
" (2m)2 X2 2

= % exp 1 |:XT (2_1 —2V)x—2(p+ ES)T x4 ,u,TZ_l;L} dx, (A.20)
o e 2

where dx := dx - - - dz,. If we set B* := 71 — 2V and p* := p + s, then by the assumption that
¥* € R™" is a non-singular matrix, Eq. (A.20) results in

8o 57 1+ X7VX)]

_ (%),2}'2'; /nexp{——[xTE*x 2 (1) S x4 4TS 1,u]}dx

_ (27T>72}|2|; /nexp{——< (=) s ) 5 (2*)—12—1u)}
X exp —%[ W) T @) 4TS p]}dx

<[, <2ﬁ)3|(12*>‘1|éexp{_%(XT_(E) o “>{ 1} (T -5 o

—|(2|;)| : k exp {% [(,u,*)—r n @) e - .U'Tz_lﬂ] } : (A.21)

Eq. (A.21) can be rewritten as follows:

|(2|;)|—;|§ exp {% [(“*)T (el _urz—lu}}
_le] (2;'1‘ e {3 T {BE) T —m T (@) @) s @)} a2

Therefore, setting s' := —v {thét —1—6:1% +R/0; + ¢tT] and V := —3 (ft —|—£tT) in Eq. (A.21)
yields Eq. (A.17).
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Substituting Eq. (A.17) and (A.18) into Eq. (A.16) and rearranging results in

~ _T — S—
Vi[se] = supz—exp{ —’Y{—thQtQt-f— |:Qt 6, + R, -:'-t-i-VtT—1‘I’t+‘I’tT}Qt +W, - P/ Q,
q:€R

—T 1 %\ — 1 ~ v v\ — *\ —
+Qq [Gt—H 5 (=) 'nf - §’YZ§} Q + [HtTH + (ay )T =) hEn )
o~ — — =T _ _ o —

—9! (57 0 — @) [Q+Q/ (1 - e )L+ e T — e (5)) 710/ | R,
FRT [0 59005 0] R+ e LT+ )T (2078 6] (90 (5) 6] R

+Q)n (B HE) T Bvi +RIG(EN) (S b ve - %vll ()" T by v

[ 2@ TRy o] ) )T b v+ Z - 5 )

@) (=) ()7 - 50! () b+ ]} (A.23)
where S = (5) 1y (€ + €]), S = (57 (20757 - (57, 0 = log UZH and

~ 1
= 5 (Qt + QI)
1 1 . - 1, T
= oAz — 1) + 5 {A (I ~ )} = Gegr + 5o L1 AAe + 5 {e T 1A}

— e PN AT AN+ 175t (2;)_15T + 1’726 (e RQXQ)'
Oy := LA, — 2G i1 +e L Ay — e (B7) 18] +935 (€ RP?);
Et = —(1 — € p)IQ — € pIt+1 + 2e” th+1AtAt — "yat ( t) 52— (6 R2X2>;
o, :=(by) (Z}) (=)' (e R¥?);

U= —H/, +e "L AN+ @) ()7 (378 — el (376 + )T (e RV,
(A.24)

Thus, under the following assumptions (or regularity conditions):
L =) 4y (& —|—§:) is non-sungular;
2. Q= 2 (2 +Q/) is positive (semi)definite,

we can derive the optimal execution volume at time ¢ via the same method used in step 2 and obtain
as follows:

q = 0! {ejﬁt +E R+ 0] vy +\I:t} (A.25)
(:Z a; + btat +c:R; + dtVt—l) .
Finally, by substituting this into Eq. (A.23) the optimal value function becomes
= =T~ = =T
W[St] = —eXp{ - “/[Wt - P:Qt + Q¢ GiQ, + H:Qt +Q: LR + R:Jth + Lz—trRt

T
+Q, Mvi 1 + R/ Nyvy  + v Xyvi g + Y[ vy + Zt] }, (A.26)
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where

Gt =Gy — %’W)t (2:)_177: - %72? + iatﬁt_le:;
H =H, + @) @) E) 'l -l )70 - )"+ %wi Q'e/;

L= (L= e ) e 7T = (5) 7 6] + 50, 5]

Jpim T = 590 (21 0] + 1EAE

L[ =c Ll + @) () ' E) 70 —v(e)" ()18 + %tﬂ 02/
M, = (5F)7 ()7 b + 0]

Noi= 6, (5 (5)) b + 5208

Xuim 5 (b)) SFbY + 1019/
Y/ = = () Y ) (B E) 7 b+ e

Zy = Zyi1 — % @) =y + @) (=) (=) e - %qs? (=) "

+ ¢ + iw? Q 'w,. (A.27)
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B Proof of Theorem 2.2

According to the above settings, the value function at the maturity becomes

Vg [sri] = — exp{ - [WT+1 — (P71 + XT+16T+1)TGT+1} }, (B.1)

and thereby, the optimal value function at time 7" is calculated as follows:

Vrlsr] = SU%E [VT+1 Wri1, Prys, Qryq, Rrga, vr] ‘WT, Pr,Qr, Ry, VT—l}
qre

= sup E[ - G‘Xp{ - [WT—H — (Pra1 4+ x7+1Qr 1) GT+1} HST]

qr€R
~ _T — JR—
= Sup —exp { - 7[ — a7 Qrar + [QTGT +RJEr + vy ®r + ‘I’H ar + Wr - P1Q,
qr e
—T 1 v 1 —
+Qr [ - <XT+1 + X;Jrl) - 5“/HTKTET'€THT - 572%} Qr
— =T T
+ [ @) krllr — (u5)7 |Qr + (1 - e )Qr Ry — Qrllrarbyvr ]}, (B.2)

where II7 := e ?Ar + B, and
~ 1 -
Qr = - (QT + QT)

2

1 1 T+ 1 T 1 v

= §AT (I —I7) + 3 {Ar (I —II7)} + 5 (XT+1 + XT+1) +357 (I — O7) krE¥kr (1o — 7)
1

+ 3757 (€ R?);
eT = _HTAT + (XT+1 + X;—i—l) — "YHTK,TZ}QK,T (IQ — HT) + ’yz% (6 RQXQ);
7= —(1 —e )Ly (€ R¥*?);

&7 := — (b}) " kr (I, —I7) (€ R¥?);
Ol = —(a%) kp (I —Ip) + ps (€ RV¥?). (B.3)

(1

We can derive the optimal execution volume satisfying Eq. (B.2) by obtaining the optimal
execution volume ¢; which attains the maximum of

~ _T —_ S—
Krlar] = —arQrar + [QTGT +RyEr + v ®p + ‘I’H ar + Wr — P1Qy
Al T 1 v 1 EiraY
+ Qr [ - (XT+1 + XT+1> — g MrerSrerIly — 5724 Qr
v raY N ol v

+ [— (a¥) " wrlly — ()" } Qr + (1 —e”)QrRr — Qpllrkrbyvr_;. (B.4)
Eq. (B.4) is a quadratic function with a negative definite matrix Qp + Q;Fr with respect to qr,
and thereby a concave function with respect to qp, which leads to the concavity of Eq. (B.2) with

respect to qp. Therefore, by completing the square of Kp [qT] with respect to qr, we obtain the
optimal execution volume at time t =T

ar = f(s7) = 7' {07Qr + Ef Ry + @y + U7 |
(=:ar_, +b7 1Qr_y + ¢ Ry +df_vr_1), (B.5)

where
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and by substituting this into Eq. (B.2) the optimal value function becomes

— =T, = — =T
Vi[sr] = —exp { =7 [Wr - PIQr + QrG1Qr + HIQy + QrIrRy + REIrRy + LIRy

T
+ QrMpvr_y + RENpvyr_y +ve  Xpvr o + Yvy g + ZT] }, (B.6)

where
Gio— -+ To1) = SMeeSye Il — 2455+ to0- e
T 5 \XT+1F X741 g Virkrpkrlly = o2 + 2 O8O
* v 1 N —
H;" = — (ay) " srllr — (45) " + %7 Q707
" - Iy &1=T. . lo 51T T leTe-1aT
IT = (1 —e p)IQ + §6TQT1:'T; JT = Z:TQTl.:T; LT = §IIITQT1='T;
1. =~ 1_ =~
M; —HTKZTb}Q + 567“9;1@}; N? = 5’:"7{2;1@};
1 ~ 1 ~ 1 ~
X5 = ZQTQ;%}; Yi = 5\1}}(2;1@}; Zp = Z\If}ﬂ;l%. (B.7)
Fort € {T—1,...,1}, we can recursively derive the optimal execution volume and optimal value
function at each time by a similar derivation which we use to obtain the optimal execution volume
in the last subsection for time ¢t € {T"—2,...,1}. O
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