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1 Introduction

Let k > 0 be the wave number, and let Ri := R x (0,00) be the upper half plane, and let W :=
R x (0, k) be the waveguide in R2. We denote by 'y := R x {a} for a > 0. Let n € L(R2) be real
value, 27-periodic with respect to z; (that is, n(x1 + 2w, x2) = n(x1, x2) for all z = (21, 22) € R2),
and equal to one for zo > h. We assume that there exists a constant ng > 0 such that n > ng in
Ri. Let q € L“(R_i) be real value with the compact support in W. We denote by @ := suppg. We
assume that R?\ @ is connected.

We consider the following scattering problem: For fixed y € R%— \ W, determine the scattered
field u® € HL (R?) such that

Au® + k(1 4 )nu® = —k*qnu’(-,y) in R%, (1.1)
u® =0 on Ty, (1.2)

Here, the incident field u? is given by u!(x,y) = G, (x,y), where G, is the Dirichlet Green’s function
in the upper half plane Ri for A + k?n, that is,

Gn(2,y) = G(z,y) +a*(z,y), (1.3)

where G(z,y) = ®(z,y) — ®k(x,y*) is the Dirichlet Green’s function in R% for A + k2, and
y* = (y1, —y2) is the reflected point of y at R x {0}. Here, ®(z,y) is the fundamental solution to
Helmholtz equation in R?, that is,

L1
p(ry) = {Hy (Klz —yl). = # . (14)
and 4° is the scattered field of the unperturbed problem by the incident field G(x,y), that is, @*
vanishes for o = 0 and solves
AT + k*na® = k*(1 — n)G(-,y) in RL. (1.5)

If we impose a suitable radiation condition (see Definition 2.4), the unperturbed solution @* is
uniquely determined.

In order to show the well-posedness of the perturbed scattering problem (1.1)—(1.2), we make
the following assumption.

Assumption 1.1. We assume that k> is not the point spectrum of mA in H&(Ri), that is,
evey v € H'(R%) which satisfies

Av + E*(1+ q)nv =0 in R%, (1.6)
v =0 on Iy, (1.7)

has to vanish for xzo > 0.



The following theorem was shown in Theorem 1.2 of [1].

Theorem 1.2. Let Assumptions 1.1 hold and let f € L2(Ri) such that suppf = Q. Then, there

exists a unique solution v € H} (R%) such that

Au+E*(1+g)nu= f in R?, (1.8)

u =0 on I'p, (1.9)

and u satisfies the radiation condition in the sense of Definition 2.4.

Roughly speaking, this radiation condition requires that we have a decomposition of the solution
w into u® which decays in the direction of z;, and a finite combination «(?) of propagative modes
which does not decay in x1, but it exponentially decays in . In Section 2, we will study details of
the radiation condition.

By Theorem 1.2, the well-posedness of this perturbed scattering problem (1.1)—(1.2) holds.
Then, we are now able to consider the inverse problem of determining the support of ¢ from measured
scattered field u® by the incident field uf. Let M := {(x1,m) : a < 71 < b} for a < b and m > h,
and Q := suppgq. With the scattered field u®, we define the near field operator N : L2(M) — L*(M)
by

Ng(x) := /M w’(z,y)g(y)ds(y), © € M. (1.10)

The inverse problem we consider here is to determine support @ of g from the scattered field u*(x, y)
for all x and y in M with one fixed £ > 0. In other words, given the near field operator N, determine

Q.

The following theorem was shown in Theorem 1.1 of [2].

Theorem 1.3. Let B C R? be a bounded open set. We assume that there exists gmin > 0 such that
4> Gmin a.e. in Q. Then for 0 < a < k*NminGmin,

BcCQ <~ ()’,HEHB <fn ReNV, (1.11)

where the operator Hp : L>(M) — L*(B) is given by
Hpg(x) ::/ Gn(z,y)9(y)ds(y), = € B, (1.12)
M

and the inequality on the right hand side in (1.11) denotes that ReN — aHzHp has only finitely
many negative eigenvalues, and the real part of an operator A is self-adjoint operators given by

Re(A) = %(A + A",

By Theorem 1.3, we can understand whether an artificial domain B is contained in @ or not.
Then, by dispersing a lot of balls B in R%_ and for each B checking (1.11) we can reconstruct the
shape and location of unknown Q.

This paper is organized as follows. In Section 2, we recall a radiation condition introduced in
[4]. In Section 3, we study several factorizations of the near field operator N, which prepare for the
proof of Theorem 1.3. Finally in Sections 4, we prove Theorems 1.3.



2 A radiation condition

In Section 2, we recall a radiation condition introduced in [4]. Let f € L?(R%) have the compact
support in W. First, we consider the following direct problem: Determine the scattered field
u € H} (R?%) such that

Au + k*nu = f in R?, (2.1)

u =0 on Ty. (2.2)

(2.1) is understood in the variational sense, that is,
/ [Vu-Ve - k:2nu,0 / fpdz, (2.3)
]R2

for all p € H 1(R%r), with compact support. In such a problem, it is natural to impose the upward
propagating radiation condition, that is, u(-, h) € L*°(R) and

w(z) = 2 /F h u<y)%j‘;y)ds(y) —0, 25> h. (2.4)

However, even with this condition we can not expect the uniqueness of this problem. (see Example
2.3 of [4].) In order to introduce a suitable radiation condition, Kirsch and Lechleiter discussed
limiting absorption solution of this problem, that is, the limit of the solution w. of Au. + (k +
i€)?nu, = f as € — 0. For the details of an introduction of this radiation condition, we refer to [4].

Let us prepare for the exact definition of the radiation condition. We denote by Cgr :=
(0,27) x (0,R) for R € (0,00]. The function u € H'(CRg) is called a-quasi periodic if u(2m,x3) =
€22y (0, z2). We denote by Hl(CRg) the subspace of the a-quasi periodic function in H'(Cg), and
Hp10,(Coo) == {u € H},(Cu) : u|CR€ H}(Cpg) for all R > 0}. Then, we consider the following
problem, which arises from taking the quasi-periodic Floquet Bloch transform in (2.1)—(2.2): For

€ [-1/2,1/2], determine uq € H} ;,.(Cs) such that

Aug + k*nug = f, in Cao. (2.5)

uq =0 on (0,27) x {0}. (2.6)

Here, it is a natural to impose the Rayleigh expansion of the form

ua(a:) _ z:un(Oé)eimr:1+i\/k2_(n+u)2(gr:2—h)7 T > h’ (27)

nez

where u, (o) := (27) 7! f02ﬂ uq (21, h)e~ ™1 dzy are the Fourier coefficients of uq (-, k), and \/k2 — (n + )
iv/(n+a)2—k2 if n+ a > k. But even with this expansion the uniqueness of this problem
fails for some a € [—1/2,1/2]. We call a exceptional values if there exists non-trivial solutions
Uq € Ha 10c(Coo) of (2.5)—(2.7). We set Ay, :={a € [-1/2,1/2] : Il € Z s.t. |a+ | = k}, and make
the follovvlng assumption:

Assumption 2.1. For every o € Ay, the solution of u, € H', (Cw) of (2.5)-(2.7) has to be zero.

a,loc

The following properties of exceptional values was shown in [4].



Lemma 2.2. Let Assumption 2.1 hold. Then, there exists only finitely many exceptional values

€ [-1/2,1/2]. Furthermore, if o is an exceptional value, then so is —«. Therefore, the set of
exceptional values can be described by {a; : j € J} where some J C Z is finite and a—j = —a; for
J € J. For each exceptional value oj we define

Ap+E*np=01in Cs, ¢ =0 for 9 =0,
{d) € aJ’loc(COO) : ¢ QS ¢ 2 }

¢ satisfies the Rayleigh expansion (2.7)
Then, X are finite dimensional. We sel m; = dimX;. Furthermore, ¢ € X; is evanescent, that is,
there exists ¢ > 0 and § > 0 such that |¢(z)|, |Vo(x )| < ce 012l for all x € C’

Next, we consider the following eigenvalue problem in X;: Determine d € R and ¢ € X; such

that
—i /w a—mzpdx = dk/oo novdz, (2.8)
for all 1 € X;. We denote by the eigenvalues d; ; and eigenfunction ¢; ; of this problem, that is,
- 015 Ydz = dy jk / ney jpdz, (2.9)
Coo a.Ll Coo

for every I =1,...,m; and j € J. We normalize the eigenfunction {¢;; : 1 =1,...,m;} such that
k/ ney ;v jdx = oy, (2.10)
Coo

for all 1,1’. We will assume that the wave number k > 0 is regular in the following sense.
Definition 2.3. k> 0 is regular if d; ; # 0 for all I = 1,...m; and j € J.
Now we are ready to define the radiation condition.

Definition 2.4. Let Assumptions 2.1 hold, and let £ > 0 be regular in the sense of Definition 2.3.

We set )
1 2 ("2 sint
(1) = = l1 + —/ ﬂdt] , 11 €R. (2.11)
2 T 0 t
Then, v € H, lloc(Ri) satisfies the radiation condition if u satisfies the upward propagating radiation

condition (2.4), and has a decomposition in the form u = u") + 4 where u(1)|]R><(O R E HY(R x
(0, R)) for all R > 0, and u(? ¢ L*°(R?) has the following form
u?(2) = ¢ (21) Z Z aijdu(x) + 9 (z1) Z Z a1 ;(x (2.12)
jeJ d; J>0 jeJ d; ]<O

where some a;; € C, and {d;j,¢1;: 1 =1,...,m;} are normalized eigenvalues and eigenfunctions of
the problem (2.8).
Remark 2.5. It is obvious that we can replace 1™ by any smooth functions F with ¢t (z) =
1+0O(1/x1) as 1 — oo and YT (z1) = O(1/x1) as 1 — —oo and d;;ll@b*'(:rl) — 0 as |x1] — oo (and
analogously for 7).

The following was shown in Theorems 2.2, 6.6, and 6.8 of [4].
Theorem 2.6. For every f € L? (Ri) with the compact support in W, there exists a unique solution
Up+ic € H'(R2) of the problem (2.1)-(2.2) replacing k by k + ie. Furthermore, uj4;. converge as
€ = +0 in H. (R2) to some u € H. (R2) which satisfy (2.1)-(2.2) and the radiation condition in
the sense of Definition 2.4. Furthermore, the solution u of this problem is uniquely determined.



3 A factorization of the near field operator

In Section 3, we discuss a factorization of the near field operator N. We define the operator
L : L*(Q) — L*(M) by Lf : where v satisfies the radiation condition in the sense of
Definition 2.4 and

= vy

Av + E*(1 4 ¢)nv = —k2\/%f, in R, (3.1)
v=0on R x {0}. (3.2)

We define H : L>(M) — L*(Q) by
Hoo) i= V@] [ Gl mamdsto). = < @ (33)

Then, by these definition we have N = LH. In order to make a symmetricity of the factorization
of the near field operator IV, we will show the following symmetricity of the Green function G,,.

Lemma 3.1.

Gn(2,y) = Gu(y,2), = #y. (3.4)

Proof of Lemma 3.1. We take a small 7 > 0 such that By, (z) N B, (y) = 0 where Bc(z) C R? is
some open ball with center z and radius € > 0. We recall that G, (z,y) = G(z,y) + 4°(z,y) where
G(z,y) = Pr(z,y) — Px(z,y*) and @®(z,y) is a radiating solution of the problem (1.5) such that
u®(z,y) = 0 for zo = 0. In Introduction of [4] @° is given by 4°(z,y) = u(z,y) — x(|z — y|)G(z,y)
where x € C°(Ry) satisfying x(t) = 0 for 0 <t <n/2 and x(t) =1 for t > n, and u is a radiating
solution such that u =0 on R x {0} and

Au + k*nu = f(-,y) in Ri_, (3.5)
u=0onR x {0}, (3.6)

where
Fe) = [R2(1=n) (1= x(|- =yD) + Ax(| - =yD)| G 9) +29x(| - ) - VG (y).  (37)

Then, we have Gy, (z,y) = u(z,y) + (1 — x(|z —y|))G(z,y). By Theorem 2.6 we can take an solution
uc € H'(R2) of the problem (3.5)—(3.6) replacing k by (k + ie) satisfying u. converges as e — 40
in HL(R2) t0 1. We set Gue(2,y) i= uc(2,9) + (1~ x(|2 — y))G(2,9), and Gp.(z,y) converges as
¢ = +0 to G(z,y) pointwise for z € R2. By the simple calculation, we have

[Az + (k +i€)*n(2)|Gc(z,y) = —6(2,y) + (2kei — €)n(2) (1 — x(|z — y])) G (2, y). (3.8)

Let r > 0 be large enough such that z,y € B,(0). By Green’s second theorem in B,(0) NR% we



have

—Ghnely, ) + (2kei — 62)/3 ( )ue(z,w)n(Z)(l —x(lz2 =y)G(z,y)dz
2n\Y

+ Ghe(z,y) — (2kei — 62)/ ue(z,y)n(2)(1 — x(|z — z|))G(z, )dz

B2n(35)

_ / Gre(2,2)[ D + (k + i€)2n(2)] G (2, y)dz
B-(0)NRZ

[ Gude)[Be ot i) G )
B-(0)NRZ

Oue(z,y) Oue(z, x)
= Ue(2, T) ————= — ue(z,y) ————=ds(z). 3.9
/ IR Ol 7O (3.9)

Since u. € H'(R%), the right hand side of (3.9) converges as r — oo to zero. Then, as r — oo in
(3.9) we have

Gn,€($yy) - Gn,e(yv SL’)
= (2kei — 62)/ uc(z,y)n(2)(1 — x(|z — 2|))G(z, x)dz

n(T

— (2kei — 62>/B ue(z, 2)n(2)(1 = x(|z — y|)G(z,y)dz (3.10)

Since ue converges as € — +0 in H} (R%) to u, the right hand side of (3.10) converges to zero as
¢ — +0. Therefore, we conclude that Gy, (z,y) = Gp(y, z) for x # y. O

By the symmetricity of G,,,

(Ho.f) = /Q (Vn(@a@)] /Man<x7y>g<y>ds<y>}md:c
- / o) / Vi@ @Gz, 9) f (2)ds(z) }s(y)
M Q

= [ o[ VGG ) ()t (3.11)

which implies that
1) = [ VGG ) 0)ds), = € M. (312)
We define 7': L*(Q) — L*(Q) by Tf = {54 f — \/Inglw where w satisfies the radiation condition
. Aw + k*nw = —/|ng|f, in R, (3.13)
v=0onR x {0}. (3.14)

We will show the following integral representation of w.



Lemma 3.2.

w(a) = /Q VDA Gal, 1) f )y, = € RE. (3.15)

Proof of Lemma 3.2. Let w. € H} (R%) be a solution of the problem (3.13)—(3.14) replacing k

by (k+ie) satisfying w. converges as € — +0 in H. (R2) to w. Let Gy, (y, ) be an approximation
of the Green’s function G, (y,z) as same as in Lemma 3.1. Let » > 0 be large enough such that
z € B,(0). By Green’s second theorem in B,(0) NR% we have

() + (2kei — &) /B )= x(ly )Gy

+ /Q VI W) Gy, ) (y)dy

N / we(y) [Ay + (k +i€)*n(y)] G (y, 2)dy
B (0)NRZ.

- / Gne(y,x) [Ay + (k+ ie)Qn(y)]we(y)dz
B (0)NRZ.

Oue(y, Owe (1
= [ D B gy, (3.16)
9B, (0)NR Dy Vy

Since u,, we € H'(R%), the right hand side of (3.16) converges as r — oo to zero. Then, as r — oo
in (3.16) we have

we(w) = (2hei — ) / wely)n()(1 — x(ly — #1))Gy. z)dy
B277(95)
+ /Q\/In(y)Q(y)lGn,e(y,x)f(y)dy (3.17)

The first term of right hand side in (3.17) converges to zero as € — +0, and the second term converges
to fQ In(y)q(y)|Gn(y, z) f(y)dy as € — +0. As € — +0 in (3.17) and by the symmetricity of Gy,
(Lemma 3.1) we conclude (3.15). O

Since w satisfies

ng {|nq|
VIng| * k*ng
2y, (3.18)

V/Ind|

we have w|M: LTf. Therefore, by (3.12) and (3.15) we have H* = LT. Then, we have the
following symmetric factorization:

Aw+ KA+ ¢nw = —k f=+VInglw} in Ri

N =LT*L". (3.19)
We will show the following lemma.

Lemma 3.3. (a) L is compact with dense range in L*>(M).



(b) If there exists the constant qmin > 0 such that ¢min < q a.e. in Q, then ReT has the form
ReT = C + K with some self-adjoint and positive coercive operator C' and some compact
operator K on L?(Q).

(c) Im(f,Tf) >0 for all f € L*(Q).
(d) T is injective.

Proof of Lemma 3.3. (d) Let f € L?(Q) and T'f = 0, i.e., kﬁﬂ = /|nglw where w satisfies
(3.13)—(3.14). Then, Aw + k?n(1 + ¢)w = 0. By the uniqueness, w = 0 in R? which implies that
f = 0. Therefore T' is injective.

(b) Since n and g are bounded below (that is, n > Ny, > 0 and ¢ > gnin > 0), T has the form
T = C + K where K is some compact operator and C' is some self-adjoint and positive coercive
operator. Furthermore, from the injectivity of T' we obtain that T is bijective.

(a) By the trace theorem and v € H} (R%), Lf = U|M€ H'Y2(M), which implies that L :
L?*(Q) — L*(M) is compact.

By the bijectivity of T and H = T*L*, it is sufficient to show the injectivity of H. Let

loc

g € L2( ) and Hg(z) = /In(x) |fMG (z,y)9(y)ds(y) = 0 for = € Q. We set v(z) :=
G (y)ds(y). By the deﬁnltlon of v we have
Av + E?nu =0, in R2 \ M, (3.20)

and since ¢ are bounded below, v = 0 in . By unique continuation principle we have v = 0 in
R2 \ M. By the jump relation, we have 0 = aay — 8(;’; = g, which conclude that the operator H is
injective.

(c) For the proof of (¢) we refer to Theorem 3.1 in [1]. By the definition of 7" we have
m(f,Tf) = —Im/ fV Inglwdx = Im/ WA + k*n|wdz, (3.21)
Q Q

where w is a radiating solution of the problem (3.13)—(3.14). We set Qn := (=N, N) x (0, N?)
where s > 0 is small enough and N > 0 is large enough. By the same argument in Theorem 3.1 of
[1] we have

m(f,Tf) =1Im WA + k*njwdr = Tm wAwdzx
Qn QN

1 _ )
e D @y /C i o, 0

J€J dy judy ;>0 B(N)
1 _ — Oy
m[gZ > al,jal',j/c i 02 “dx | +o(1), (3.22)
jed dij,dy ;<0 B(N)

where where some a;; € C, and {d;;,¢;; : | =1,...,m;} are normalized eigenvalues and eigenfunc-
tions of the problem (2.8). By Lemmas 6.3 and 6.4 of [4], as N — oo in (3.22) we have

Im(f,Tf) > —le ;i Pdi; — > |az,j|2dl,]1 >0, (3.23)

JjeJ dl]>0 dl,j<0

which concludes (c). O



In order to show Theorems 1.1 and 1.2, we consider another factorization of the near field
operator N. We define T : L*(Q) — L*(Q) by Tv := k? "qlg k294 where v satisfies the

Ing VIndl
radiation condition and n
Av+ kX (1 + ¢)nv = —k? \/%g, in Ri_, (3.24)
ng
v=0on R x {0}. (3.25)

Then, by the definition of 7" and T we can show that 77 = [ and TT = I , which implies that
T—! = T. Therefore, we have by L = H*T~!
N =LT*L* = H'T™'H = H*TH = HyT Hy, (3.26)

where Hg : L2(M) — L*(Q) is defined by
Hgg(x / Gz, y)g(y)ds(y), z € Q, (3.27)

and T : L?(Q) — L%(Q) is defined by T'f = k®nqf + k*nqw where w satisfies the radiation condition
and
Aw + E*(1 + q)nw = —k*ngf, in R%, (3.28)

w =0 onR x {0}. (3.29)
We will show the following lemma.
Lemma 3.4. Let B and Q be a bounded open set in Ri.
(a) dim(Ran(Hpy)) = oo.
(b) If BNQ =10, then Ran(Hp) N Ran(Hy)) = {0}.

Proof of Lemma 3.4. (a) By the same argument of the injectivity of H in (a) of Lemma 4.3, we
can show that Hp is injective. Therefore, H7 has dense range.

(b) Let h € Ran(H}j) NRan(H()). Then, there exists fp, fq suct that h = Hj fp = H() fo. We
set

vp(x) = /BGn(Ly)fB(y)dy, e R (3.30)

vQ(z) == /QGn(xvy)fQ(y)dy, reR: (3.31)

then, vp and v satisfies Avp + k*nvp = —fp, and Avg + k2an = — fg, respectively, and vp = vg
on M. By Rellich lemma and unique continuation we have v = vg in R% \ (BN Q). Hence, we
can define v € H} (R?) by

loc

UB = vQ inR2 \ (BNQ)
v:i=14 vp in Q (3.32)
vQ in B

and v is a radiating solution such that v = 0 for 29 = 0 and
Av + k*nv =0 in R2. (3.33)

By the uniqueness, we have v = 0 in R?, which implies that h = 0. O



4 Proof of Theorem 1.1

In Section 4, we will show Theorem 1.3. Let B C Q. We define K : L?(Q) — L*(Q) by K f := k?nqw
where w is a radiating solution of the problem (3.28)-(3.29). Since w|Q€ HY(Q), K is a compact

operator. Let V' be the sum of eigenspaces of Re K associated to eigenvalues less than a— k> Nmin Gmin.-
Since a — kJQnmmqmm < 0, then V is a finite dimensional and for Hgg € v+

(ReNg,g) = /Q K2ng|Hog|?dz + (ReK)Hog, Hog)

> kQTlmianin ||HQ9||2 + (Oé — kJQﬂmianin) ||HQ9||2
> allHgg|? = a|Hpgl? (4.1)
Since for g € L*(M)
HogeV:t <« ge(HHV)*, (4.2)

and dim(Hp)V) < dim(V) < oo, we have by Corollary 3.3 of [3] that aH;Hp <gn ReN.
Let now B ¢ @ and assume on the contrary aHjHp <g, ReN, that is, by Corollary 3.3 of [3]
there exists a finite dimensional subspace W in L?(M) such that

((ReN — aHpHp)w,w) > 0, (4.3)

for all w € W, Since B ¢ Q, we can take a small open domain By C B such that By N Q = 0,
which implies that for all w € W+

a|Hpwl* < alHpw|?
< ((ReN)w, w)
= ((ReT)How, Hou)
< HReTH ||HQw||2. (4.4)

By (a) of Lemma 4.7 in [3], we have
Ran(Hp,) € Ran(H()) + W = Ran(Hp), Pw), (4.5)

where Py : L?(M) — L?(M) is the orthognal projection on . Lemma 4.6 of [3] implies that for
any C' > 0 there exists a w, such that

Hq
(5 )

Hence, there exists a sequence (wp)meny C L2(S') such that ||Hp,wm| — oo and ||Howm| +
| Pvwpm|| — 0 as m — co. Setting 1y, := wpy — Py wm, € W we have as m — oo,

2

1H gy wel|* > ©* = C*(|[Hque|* + | Pwwel®). (4.6)

[ Hpy Wl = [[Hpywml|| — [[HB, || || Pwwm| — oo, (4.7)
[Hom|| < [Howml|l + [ Holl [[Pwwnl| — 0. (4.8)
This contradicts (4.4). Therefore, we have a H3Hp £fn ReN. Theorem 1.3 has been shown. O

By the same argument in Theorem 1.3 we can show the following.

Corollary 4.1. Let B C R? be a bounded open set. Let Assumption hold, and assume that there
exists Gmaz < 0 such that ¢ < gmaz a.e. in Q. Then for 0 < & < k*Npmin|tmaz|,

BCQ <+« aHyHg <gy, —ReN, (4.9)
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