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Abstract

We consider an inverse problem for stationary Kirschhoff plate equations. It
is proved that a single pair of surface Cauchy data (u, Au) uniquely determine an
inclusion where the deflection and bending displacement of a plate vanish.

1 Introduction and main result

This note is concerned with an inverse problem arising from plate bending problems
modelled by the Kirchhoff theory of plates in elasticity. Let  C R? be a bounded domain
with smooth boundary 09 (i.e., C?), and let D C Q be an open subset of € such that
Q\E is connected. In the stationary case, we consider an isotropic, homogeneous plate
in the region Q\D under pure bending governed by (which is also known as stationary
Euler-Bernoulli equation)

A%y =w?u in Q\D,
u=Au=0 on 0D, (1)
u=f, Au=yg on Of),

where f € H3/2(0Q), g € H-Y/2(9Q). In (1), u and Au represent the deflection and the
bending displacement of the plate, respectively. The frequency w > 0 is assumed to be
such that the above Kirchhoff plate problem admits a unique solution

veX ={u:ueH*Q\D), u=Au=0 on 0D}

In this paper we are interested in the inverse problem of recovering 0D from knowledge
of a single pair (f,g) € H*?(0Q) x H~Y/2(0%).

Theorem 1.1. Suppose that D is a polygon and |f| > 0 on Q. Then the interior
boundary 0D can be uniquely determined by the observation data (f,g).
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2 Lemma
Define 2’ := (x1, —x2) for x = (21, 12) € R%

Lemma 2.1. Let Q C R? be a bounded symmetric domain with respect to the x1-axis
and write T := QN {z2 = 0}. Suppose that u € H*(Q) is a solution to

Au=v in €, u=0 on T,

where v € L?(Q) satisfies the symmetric relation v(x) = —v(x') for all x € Q. Then we
have the same symmetry for u, that is, u(x) = —u(z’) for all x € Q.

Proof. Set QF := QN {x: 29 = 0}. We extend u|g+ from QF to Q as follows

| u(x) if xeQt,
wiw) = { —u(z’) if zeQ.

Since u = 0 on I' and v(z) = —v(2’), it is easy to verify Aw = v in Q and w = u, dyw =
dyv on I'. By Holmgren’s uniqueness theorem, we obtain w = u in €2, implying that
u(z) = —u(z’) for € Q7. By the symmetry of the domain €, we obtain u(z) = —u(z’)
for all z € 2. ]

Lemma 2.2. Let Q and T’ be given as in Lemma 2.1. Suppose that u € H?(Q)) is a
solution to

Au=0 in 9, u=Au=0 on T.

Then (i) u(x) = —u(z') for allx € Q. (i) If u = Au =0 on a line segment L C €, then
the same relations hold on L' := {2’ : x € L}.

Proof. Setting v = Au € L*(Q), we see Av = 0 in Q and v = 0 on I'. By reflection

principle for harmonic functions, we get the symmetric relation v(x) = —v(2') for x € €.
Since u = 0 on I', applying Lemma 2.1 gives the relation in the first assertion. The
second assertion follows directly from the first one. O

Remark 2.1. Lemma 2.1 applies to the following system:
APy —Pu=0 in Q, u=Au=0 on T,

where w > 0. In fact, the above boundary value problem can be equivalently formulated

as the system
U 0 1
AU, U_<Au), A_(w2 O),

U = 0 on T.

AU

Applying the proof of Lemma 2.1, one can show that U(x) = —U () for x € Q.



3 Proof of Theorem 1.1

Suppose that D; and D, are two polygons contained inside €2, and let (f;,g;) be the
boundary observations on 02 that correspond to solutions u; to (1) with D = Dj.
Assuming that (f1,91) = (f2,92) and | f;| > 0 (j = 1,2), we need to prove that D; = D».
To prove Theorem 1.1, we employ path and reflection arguments first developed in [1]
for the Helmholtz equation and later modified in [4,10]. We shall carry out the proof
following the arguments in [4, Section 3.1] but modified to be applicable for the equation
(1).

Proof of Theorem 1.1 Suppose on the contrary that D1 # Ds, we shall derive a
contraction by two steps.

Step 1. Existence of a nodal set. Set v; = Auj and Uj = (uj,vj). Then

AU; = AU; in G, Uj=(fj,g;)" on 09,

where G denotes the connected component of (Q\D1) N (Q\Ds) such that 9Q C 9G.
The coincidence of the observation data f; = fo and g1 = g2 on 0f) together with the
assumption of w gives arise to Uy = Us := U in G. This in turn implies

up =uy in G. (2)

The nodal set of u;, which we denote by XJ;, is defined as the set of line segments in ﬁ\ﬁj
on which both u; and Au; vanish. Since Q\D; is connected, we obtain G\ € D1NDs.
Hence, without loss of generality we assume that

Since both Dy and Ds are polygons, we can always find a line segment L lying on S. By
(2), this implies that

ug = u; = 0, Aus = Aup =0 on L CQ\Ds

and thus X9 # 0.

Step 2. Derive a contradiction by path and reflection arguments. Since ug is analytic,
O\D; is connected and |fa] > 0 on 952, the set Y5 must be bounded. Otherwise, s
must intersect with 9 at some point O, leading to contraction with |f2(O)| > 0. On
the other hand, the two end points of any nodal line segment of Y5 must lie on 9D.
Choose a point g € L C 0G and a continuous and injective path (¢) (¢ > 0) connecting
xo and some point y € 9. Without loss of generality, we suppose that v(0) = z¢ and
v(T) =y for some T > 0. Denote by M the set of intersection points of v with all nodal
sets of ug, i.e.,

M:={z:ze{y(t):t€]0,T]} NEa}.

The set M is not empty, since at least g = v(0) € M. Obviously, y = (1) ¢ M.
Observe that the set M is bounded. Moreover, it is closed, hence compact; see the
arguments in the proof of [10, Lemma 2]. Thus, there exists 7% € (0,T) such that



Y(t*) € M and {y(t) : t € (T*,T)} N M = 0. Let L* C X5 be the finite nodal line
segment possing through z*. We now apply the reflection principle of Lemma 2.2 (ii) to
prove the existence of a new nodal line segment of us which intersects €.

By coordinate rotation we can assume without loss of generality that L* lies on the
z1-axis. Note that the two end points of L* must lie on dDy. Choose " = ~(T* + ¢)
for € > 0 sufficiently small and 2z~ := (2%)’. Let ©¥ be the connected component of
Q\(L* U D2) containing #*, and denote by E* the connected component of ¥+ N (XF)’
containing .

Setting E = ET UL*U E~. Then E is a connected open set with the boundary
OF C 0D9 U (0D3) U 0f). Applying the reflection principle for bi-harmonic functions
(see Remark 2.1), we get us = Aug = 0 on OE™, because the same conditions hold on
both L* and (E™)". By the assumption |f2| > 0 on 99, we see OET N 9N = ), implying
that £ C Q is a bounded open set containing v(7™). Recalling the definition of ~(t),
we conclude that v(¢) must intersect OE at some ' > T*. Therefore, there must exist a
new nodal line segment passing through ~(¢'). This is a contradiction to the definition
of T* and L*. This contradiction implies D1 = Ds.

Remark 3.1. (i) The positivity assumption |f| > 0 on OS2 can be replaced by either
the distance assumption diam(D) < dist(D, ) or the irrational condition of each
corner of D; see [6,11].

(i) The proof of Theorem 1.1 implies that w must be "singular” (that is, non-analytic)
at corner points. This excludes the possibility of analytical extension in a corner
domain and is important in designing inversion algorithms with a single measure-
ment data; see e.g. the enclosure method [7], the range test approach [8, 9] as well
as [12, Chapter 5] and the data-driven scheme [5].
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