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Abstract

In this paper, an efficient algorithm for recovering a density of Sturm-Liouville operator from given
two spectra is investigated. Based on Lidskii’s theorem and Mercer’s theorem, we build a sequence of
trace formulae which bridge explicitly the density and eigenvalues in terms of nonlinear Fredholm inte-
gral equations. Due to intrinsic difficulties on ill-posedness of an inverse spectral problem, a truncated
Fourier series regularization method is utilized for reconstructing the unknown density. Moreover,
shifted Legendre polynomials are carried to balance the different order of trace formulae. Numeri-
cal results are presented to illustrated the effectiveness and stability of the proposed reconstruction
algorithm.

AMS(MOS) subject classification: 45C05, 34L16
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1 Introduction

We are concerned with a Sturm-Liouville equation

d*u
= = 1.1
Tu — Nolayu, (1)
with two separated boundary conditions (BCs)
sin(a)u(0) + cos(a)u’(0) = 0, (1.2)
sin(b)u(1) + cos(b)u'(1) =0, (1.3)

where the density p(z) is a positive and unknown function defined in the interval [0, 1] and the coeflicients
a,b e 0,m).

Our interest in this paper lies in computing the density function p everywhere on the interval [0, 1]
from two spectra. Let

{Ak(pya,0) bie=12,... (1.4)

be a first spectrum of the equation (1.1) with Dirichlet-Dirichlet boundary conditions (DDBCs), i.e.,
a=b=m/2, and
Ao k(p.a,b) k=12, bF#D (1.5)

a second spectrum corresponding to Dirichlet-Neumann boundary condtions (DNBCs), i.e., a = 7/2, b=0.
Besides, these two spectra (1.4) and (1.5) are assumed to be arranged from small to large according to
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their values. In 1946, Borg [6] proved that two spectrum can uniquely determine the density of a string
equation. Actually, if p € C2([0,1]), then with the following Liouville transformation [19, 20]

c= fol \//)(_t)dt,

§= foz \/@dt,

€)= M A(au(r),

q(&) = p~ (@) Lz M (),

the equation (1.1) reduces to a second-order Sturm-Liouville equation with potential function ¢ over [0, ]
of the form

= y"(&) + a(&y(§) = My(&). (1.6)

Together with some boundary conditions, the numerical method of inverse Sturm-Liouville problem
(SLP) for recovering the potential function ¢ in (1.6) had been studied intensively in past two decades.
Theoretically, Sini [21] reviewed four popular methods, i.e., the asymptotic expansion technique, the
integral equation technique, the C-prperty and the boundary control method, for proving the uniqueness
results of inverse SLP. Numerically, Sacks [18] described several computational methods, i.e., the integral
equation method, optimization method and matrix method, to recover g from spectral data. In terms of a
single given spectrum, a potential ¢ which is even with respect to x = ¢/2 [2, 7, 9, 13] or is given over the
interval [¢/2,¢] [1, 3, 14] can be reconstructed. For the case of providing two-spectrum, the main methods
of recovering general potentials are iteration approaches [4, 5, 8, 16, 17]. The primary differences are in the
way of determining eigenvalues on direct problem or optimization methods on inverse problem. Rundell
and Sacks [17] proposed a transformation method using a reference potential which results in solving a
hyperbolic partial differential equation in each iteration step. Andrew [4] applied Numerov’s method to
approximate the cigenvalues in each modified Newton’s iteration for recovering a non-symmetric potential.
Gao et al. [8] using a boundary value method (BVM) [10] as the main tool for estimating the eigenvalues in
each Newton iteration step. Bockmann and Kammanee [5] proposed a derivative-free method for recovering
symmetric and non-symmetric potential functions in each Broyden iteration step. The methods mentioned
above all rely heavily on the accuracy and the computing speed of direct problem.

Current work is a direct extension of Xu and Zhai [22], where an explicit relationship between the trace
operator and given eigenvalues {A;}72; was derived through the Lidskii’s theorem, i.e.,

trace(K) = > Ay (1.7)
k=1

For the sake of keeping inverseion of the above trace formula (1.7) being stable, we choose different
orthogonal polynomials from [22], i.e., shifted Legendre polynomials to convert the relationship (1.7) into

trace(Ln(K)) =Y Ln(A1). (1.8)
k=1

With the truncated Fourier series regularization method and the function of scaling factors, we finally
obtain a system of trace formulae which could be solved by line search Newton-like method [12, 23]. A
line-search method may not be able to achieve sufficient decrease, whereas the step length that satisfies
the Wolfe conditions [11] is designed to guarantee a reasonable convergence property.

This paper is organized as follows. A brief introduction about Numerov’s method to solve the forward
problem is given in Section 2. Subsequently, Sections 3 deals with the inverse problem by using the trace
formulae. Afterwards, we discuss the inversion algorithm for recovering the density in Section 4. Finally,
in Section 5, numerical examples with non-symmetric density functions demonstrate effectiveness of the
proposed reconstruction method.



2 Numerov’s method for the direct problem

In this section, for completeness, we briefly recall the Numerov’s method introduced in [2, 15] for approxi-
mations of eigenvalues of the SLP (1.1)-(1.3). This method is based on the application of finite difference
methods for the solution of ODEs over an assigned partition of [0, 1] frequently composed by

1

i=1th, i=0,1,.... N+1, h=——.
T th, 1 , IV + N1

Denote u(z;) by u; and p(x;) by p;. Recall Taylor’s expansion of the following functions

/ h2 " h3 " h4 (4)
Uir1 = u(x; + h) zui—l—hui—i-iui +§ui —I—Eui +oee (2.1)
h? h3 h*
wi—1 = u(x; — h) = u; — hu; + au;’ — 5“2/1 + Eul@) +--- (2.2)
From Egs (2.1) and (2.2), it follows that
i+1 — 2u; + Ui h?
Uit hlé Uil _ g Eug‘” +0(hY). (2.3)

As u® = (=Apu)”, substituting u” and u(¥ into (2.3) and applying difference approximation yield

Uiyl — 2U; + Uy 1
ol h; s _ﬁ)\(pi+lui+1 + 10p;u; + pi—1ui—1) (2.4)

with local truncation error O(h?). Now using the same idea as in finite difference method, it gives
Au = —\Bu, (2.5)
where A = (1/h*)T, B = (I + 15T)Q. In addition, Q = diag(p1. p2, - - ., pn), and
T11 1
1 -2 1
1 -2 1
L INN ) yen

with 717 = -2+ ﬁ, Tny = -2+ W for the boundary conditions (1.2) and (1.3).

3 Trace formulae for the inverse problem

In this seciton, we will determin the density p(z) in (1.1) from two spectra (1.4) and (1.5), which are
corresponding to the SLP with DDBCs and DNBCs respectively. Note that p(z) in (1.1) is uniquely
determined from two spectra (1.4) and (1.5). As a result, we refer to this problem as the DD-DN inverse
problem.

The solution of problem (1.1)-(1.3) can be expressed in the form of

u() = A /0 p(W)a(z,y)u(y)dy, (3.1)



where

g(z,y) = g1(z,y) = { )

for Dirichlet-Dirichlet BCs and

y, 0<y<z<1

g(a:,y) = 92(33, y) = {

for Dirichlet-Neumann BCs.
Denoting the operator K as Ku = fol p(y)g(z,y)u(y)dy, we have

Ku=\""tu. (3.2)
As K is a bounded linear operator over a separable Hilbert space, from the Lidskii’s theorem, we have

trace(K) = » _ Ax(K), (3.3)
k
where {A;(K)} are the eigenvalues of K. Clearly,
D OAR(E) =D N, (34)
k k=1
which provides, with the proposition 2 introduced in [22], the representation of trace(K),
1
trace(K) :/ p(z)g(x, x)dx. (3.5)
0

Define the trace of K®, s € Z™T as
Ts(p) = trace(K?). (3.6)

o0
obviously 75(p) = > A, ®. By proposition 1 and proposition 2 presented in [22], we have
k=1

7o) = / / p(e0)g(1,22) - pl)g(Ear1)dts - - s, (3.7)

Consequently, we build a relationship between the function p and the given data A. Especially, we have
the following two trace formulae

o0 1 1
DA :/ / p(z1)gi(xy, 2) - p(xs, )91 (25, w1)dT1 - - - dig,, 51 € LT (3.8)
t 0 0

for Dirichlet-Dirichlet BCs and
[es) 1 1
Do 2/ / pla1)g2(w1,x2) -+ p(ws,)g2(Wsy, w1 )day -~ divg,, 5o € LT (3.9)
k=1 700

for Dirichlet-Neumann BCs.



4 Inversion algorithm

The following theorem will be utilized to design a inversion algorithm later.

Theorem 4.1 (Mercer’s theorem) Assume an operator K is positive definite, and its associated kernel
K(z,y) is a real-valued symmetric, continuous function of v andy. Then K can be expanded in a uniformly
convergent series

K(z,y) = ZVnQOn (@)en(y),

n=1

where v, and @, are the eigenvalues and normalized eigenfunctions of K.

Assume {p,, ¢, (z)},~, are the eigenvalues and normalized eigenfunctions of —A, where
—A¢, = _(ZS;; = Un®n-
Applying Mercer’s theorem to (—A)~! whose kernel is g(z,y), we have

g(z,y) = Zun () B (y)- (4.1)

Substituting (4.1) into (3.7), it’s easy to see that

= Y / ous@ln(alptaris) < ([ 1¢n5<x>¢m<x)p<x)dz>.

My, Ns
Denote M(p) to be an infinite-dimensional matrix where the element of the ith line and jth column

M,;(p) = wl_/ / 6i(2)65(z)dz. (4.2)

Then we have

> A =Tu(p) = trace(M®(p)). (4.3)
k=1

4.1 Trigonometric polynomial

It’s natural to approximate the density function p by the following basis functions
om—1(x) = cos(2(m — 1)7rx), o (x) =sin(2mnrz) m=1,2,... M.
The corresponding best approximation, in L?-norm, of the density, given by

fo T)thm (x)dx
Jy w2 (x)dz
is the truncated Fourier series of the periodic extension of p with period 1. However, that if p is sufficiently

regular, the error with respect to such best approximation decreases as O(M~/?)[1]. Tt is prefered to
consider the space with basis functions given by

2M
= Z amPm (2), am(z) = (4.4)

Ym(x) = cos((m — )mx), m=1,2,...,2M. (4.5)



And denote a = {a1,aq, - ,aap }. We use 75(a), M(a) in place of 75(p), M(p). Then
2M
Mij (a) = Z amMij(em)7 (46)
m=1

where M;;(ep,) = \/ﬁ fol #i(x)d;(2)hm(z)dz, and ey, = {a1 =0, ,am—1 = 0,41, = 1,am11 =0, ,a2ps = 0}.

2

For the case of Dirichlet-Dirichlet BCs, the eigenvalues ji,, = n?7? and the eigenfunctions ¢, (z) =

V2sinnrz. Therefore,

2

w245

1
M;;(en) = Mg;)(em) /0 sinémz sin jmx cos(m — 1)medz

gy G+ j+m—1=0,
—5, i+j—m+1=0,
_ )mEy idtmol=0,m#L
o720 i—j—m+1:07m7é1,
720y 1= j7 m = 17
0, otherwise.
Similarly, for the case of Dirichlet-Neumann BCs, the eigenvalues p, = (—2”2’ 171')27 the eigenfunctions
Yn(z) = V2sin 2227z, and
8 o2i-1 251
M;j(en) = Mg) (em) = T CTESVCTESY /0 sin ——mw sin J2 mx cos(m — 1)mede

—W, 7;+17'—1+TTI/—1:0,
i+7—1—-m+1=0,
i—j+m—1=0, m#1,
i—j—m+1=0 m#1,

2
T EI(2i—1)(25-1)
2
72 (2i—1)(2j—1)°
2
T2 (2i—1)(2j—1)°
e i=7, m=1
T2(2i-1)(2j—1)’ =7 m =1
0, otherwise,

4.2 Shifted Legendre polynomials

In order to balance the different order of trace formula, we choose polynomials {P,}’ _, to design a
relatively stable scheme. From proposition 6 deduced in [22], we can see that for all polynomial P, with
P,(0) =0, the following equation holds:

> Pa(A;!) = traceP,(M(a)) (4.7)
k=1
In this section, we use the shifted Legendre polynomials on [0, 1] given by recursive formulae:

Lof(@) = 22 @0~ DLoaa) ~ L a(e), n>2,

with
Lo(z) =1, Li(z) =2z — 1.



Denoting Ly, (z) = xL,_1(z), then we have the recursive formula

L) = 202~ DEn(r) - L

n n 1(.%‘),

with
Li(z) =z, Ly(z) =22 — .

For evaluation of the forward map and its Jacobian, we utilize the following recursive relations:

trace(Lnsr (M(a))) = trace (2” — ! oM(a) — 1)Ln(x)> _ trace (” - 1in_1(g;)> ,

and

dtrace(Ln41(M(a)) tme<<'9£n+1<1\4<a>>>

8am aam

= ftrace (471/”, 2 dM( )Ln(x) + %(QM(E).) _ 1) ({).Z/nA(M(a))>

dam dam

—trace (n —1 6Ln 1( (a)))

n Oam,

Notice
OM(a)

Oy,

= M(em).

4.3 Line search Newton-like method

If Ty is slightly smaller than Ay ; and T5 slightly smaller than Ay, we use two uniform partitions for
[O,Tl] and [07T2]7 e, 0 =t <tsa < -+ < tn, = Tiand 0 = 1] < 19 < -+ < LNy, = T5. For every
tiy t=1,2,...,Ny and ¢;, ¢+ = 1,2,...,No, we apply them to rescale \; ; and Agj respectively. With
the technique of trigonometric polynomial approximation and the operator of Legendre polynomials, the
inverse problem of recovering p comes down to solving a system of nonlinear equations with the unknown

2M-vector a = {a1,az2, - ,aam}, i.e.,
trace(Lo, (MY (@) = 33 Ly (110 L(pr0, b))
(1 k=1 ’
ri(a)
W trace(Ls, (tv, MM (@) = - L, (tn, A4, @, b))
— TN, (a) _ k=1 ' =0 4.8
Fa=| " g . )
i (a) trace(Ls, ;M@ (a))) — 3 L, (1A 5 (psa, b))
. k=1
(@)

trace(Ly, (1, M@ (@) = 32 Ly, (1w Ay b (0, a0, D))
k=1 ’

where s; and s, are the chosen highest degree of shifted legendre polynomials. To make sure the above
equations system has a unique solution, we set N1 + Ny >> 2M.

Throughout this paper we make the assumption that the vector function F is continuously differentiable
in the region D containing the value of a we are interested in. In other words, the Jacobian J(a) defined



Vi ()"

vy ()7
vrid (@)

J(a)=VF(a)l =

2
Vrj(\,z)(a)T
exists and is continuous. In order to solve the above system (4.8), we apply the line search Newton-like

method as
Ak41 :ak+akpk; k:071329"'7 (410)

where the Newton step pj satisfies that

J(ag)pr = —F (ak), (4.11)

and the step length factor oy satisfies the Wolfe condtions, i.e.,

{ F(ak + axpr) < F (ar) + cronJ (ag)pr, (4.12)

J(ax + arpr) > c2J (ak)pr,
with 0 < ¢; <o < 1.

Since systems of nonlinear equations often contain singular points, this behavior gives cause for concern.
To prevent this undesirable behavior, we may have to modify the Newton direction. One possibility is to
add some multiple oI of the identity to Ji Ji, and define the step py to be

pe = —(J3 T+ or )T T F i (4.13)

For any o} > 0 the matrix in parentheses is nonsingular. Therefore, some practical algorithms choose oy,
adaptively to ensure that the matrix in (4.13) does not approach singularity. In addition, more detailed
computation procedure can be referred to Algorithm 2 in Appendix.

5 Numerical simulations

In this section, we choose four kinds of examples to study the reconstruction behaviours from the first
L eigenvalues of the two spectra, respectively. The reference eigenvalues used have been computed by
applying the Numerov’s method discussed in Section 2. For the sensitive analysis, the perturbed eigenvalues
Ao are defined by

A =\ + 60X - (rand(size(N))), i=1,2,

where 0 is the noise level and A\; = {\;1,Ai2,.... \i,}. As the matrix M(a) is infinite-dimensional, we
shall truncate it to a J x J matrix in our computation procedure.

Example 1 We first test the density
p1(z) = 0.98 — 0.04 cosmz — 0.03 cos 2wz + 0.26 cos 3wz 4 0.07 cos 4wz — 0.04 cos b,
which is a linear combination of Fourier cosine functions with M = 3.

For numerical implementation, 77 and 75 should not be greater than the minimum eigenvalue corre-
sponding to DDBCs and the minimum eigenvalue corresponding to DNBCs respectively. Besides, the size



J usually equals to the value L. Most parameters are set in Table 1. We fix the noise level § = 0.5%.
The reconstructed behaviours with different number of eigenvalues L are shown in Figure 1. As we can
see from Figure 1, the inversion algorithm is effective for the reconstruction of p;. Moreover, the greater
L becomes, the better p; is reconstructed.

Table 1: The settings of parameters.

h S1 So T1 T2 Nl N2
0.004 45 60 8 2 180 180

14 T T 14 T
—true —true
— ref:pnstructlon —reconstruction
--=-initial guess

-+=initial guess

08F 08}

06 . . . . 0.6 : : : '
0 02 04 06 08 1 0 02 04 06 08 1
X X
(a) recovery with L =5 (b) recovery with L = 10
14 T T T T T 14 T
—true e )
—reconstruction 1.3F - ::;;Tzzl;ion i
initial guess
12F y 1.2
11
Q1 SRR I VY A VR
¥ o9r A
08f 1 08F
0.7+
06 L L 1 1 1 L L L 1 0 8 ) ) ) )
0 01 02 03 04 05 06 07 08 09 1 o 02 04 06 0.8 1
X X
(c) recovery with L = 20 (d) recovery with L = 25

Figure 1: These plots demonstrate the numerical recovery of p; with diffrent number of eigenvalues when
noise level § = 0.5%.

Example 2 In this second example, we consider a general continuous density

pa(z) =14 (x — 5)2

Most parameters are also listed in Table 1. In addition, we set J = L = 20, § = 0.5%. Figure 2 shows
the reconstruction with diverse Fourier cosine functions.



1.45 T T T T 0.07 T T T T

0.06 | E
135\ J \

1251 1
\ ooal | 1
12f \ 1 \

115k | 003} g
14+ A 0.02 -

— /
S LN o LN
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
(a) recovery with M =2 (b) relative errors
1.45 . . . T 0.06 r T T T
true
14 F reconstructi 4 |
) 0.05 f 1
135 1\ 1
131 1 0.04 - 1
\ \
125 F \ 1 ’
0.03 - \ 1
12F J \
\
115 F \ 1 0.02 - 1
\ \

1.05 Y | : ) /
1 . I\\f VN~ \/

0
0 0.2 04 06 08 1 0 0.2 04 06 08 1
(c) recovery with M =4 (d) relative errors
145 : : - ‘ ‘ . . - 0.025 : : ‘ ‘ . . - - :
A true
14 »\; reconstruction | |
\
A\ 002 1
1350\ 1 I
A |
s\ | |
: \ \ \‘
0.015 - A
125+ 1 | |
‘ J
12+ B “
0.01H /
145+ g | ) /
| [N\
| ~ [\
11F | /\ / [ |
0.005 - / Vo 1
| N \ / oA
1.05 / \ / \/ |/
\/ \[ \l
\/ \ |
1 . 1 . i L
0 0.1 0.8 0.9 1 0.3 0.8 0.9 1
(e) recovery with M =5 (f) relative errors

Figure 2: Figure 2(a),(c),(e) describe the reconstruction with different M and Figure 2(b)(d)(f) depict the
numerical errors of recovery corresponding to their left subfigure where all the horizon lines represent the
variable z.
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Example 3 We next recover a non-smooth continuous function

I 1
)==+=|v— =
P3 573 3

in the case of J = 10 and J = 20. Fixing s; = 50, so =70, 77 = 8, 15 = 2, N1 = 551, No = 489, h =
0.004, 6 = 0.5%, Numerical reconstructions are shown in Figure 3.

1.15 T T T T T T T T T 1.15

true

true
reconstruction — reconstruction

(a) recovery with J = 10 (b) recovery with J = 20
Figure 3: These two plots exhibite the recovering of ps(z) with M = 4.

Example 4 For the last example, the unknown denstiy is a discontinuous function

09, 0<x<0.3,
pa(z) = 1.1, 03<2<0.7,
1 0.7< X <1.

)

Setting s; = 50, so =70, T} = 8, Ty = 2, Ny = 581, Ny = 485, h = 0.004, 6 = 0.5%, we investigate
the reconstructed behaviors with M =5 and M = 7 which are domenstrated in Figure 4.

1.15 1.15
true true
reconstruction /\ reconstruction
11F /\ B 111 \/
1.05 — 1.05
1 1
0.95 - B 0.95 [
0.9 — 0.9
085 . . . ‘ ‘ . . . . 085 . . ‘ ‘ . . . . .
0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 05 06 0.7 0.8 0.9 1
(a) recovery with M =5 (b) recovery with M =7

Figure 4: These two plots show the reconstruction of py with L = J = 20.
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Table 2: Inversion errors of non-symmetric density functions in using the maximum norm.

density noise level (%) mnorm of error density noise level (%) norm of error

o1 0 0.0005 2 0 0.0696
0.1 0.0012 0.1 0.0835

0.5 0.0083 0.5 0.0954

1 0.0254 1 0.1167

p3 0 0.0178 P4 0 0.1017
0.1 0.0233 0.1 0.1034

0.5 0.0300 0.5 0.1180

1 0.0514 1 0.2773

Through Figure 1-3, one can clearly observe that the reconstructed non-symmetric density functions
are in good agreement with their true solutions. Compared with the three mentioned densities, the
reconstruction for discontinuous function ps shown in Figure 4 is the worst, but even in this case the
recovered function still resembles its exact solution. For sensitive analysis, Table 2 illustrates the results
of inversion algorithm to recover these four kinds of densities where nosiy eigenvalues are provided with
noise levels of 0.1%, 0.5%, 1%, respectively. One can see that our proposed reconstruction method stays
stable.

6 Conclusions and Acknowledgments

In this paper, we introduce a new method to solve the inverse Sturm-Liouville problem in the non-
symmetric case. It is based on the Lidskii’'s theorem and Mercer’s theorem. A series of trace fomulas
that combining the eigenvalues and the density in (1.1) are built by the two theorems. In our computaion
procedure, therefore, we only need to compute eigenvalues once that is totally different from the previous
methods introduced in [1, 3-5, 9, 13, 14]. Furthermore, our work provides a new possibility for solving
inverse higher order Sturm-Liouville problem. This work was partially supported by NSFC 11621101,
91630309 and the Fundamental Research Funds for the Central Universities.
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Appendix. Detailed algorithm for inverse problem

Algorithm 1 Calculating Jacobian and traces with Legendre polynomials
Input: a = (a1, az,...,2M),M(a), s;
Output: J(a), trace(L,(M(a)));
1: Compute Ly(M(a)), Mﬂﬁ
2: dy = trace(M(a));
3 dy = trace(ﬂgM(a));
4: for 1 <m < 2M do
J1,m = trace(M(a));

Jo.m = trace (agg:));

)

end for
for~2§i§s—1do R o
Lit1(M(a)) = 2 (2M(a) — 1) Li(z) — S Lioa ();
10: for 1 <m <2M do
11 dLiz1M(a) (#M(em))~ (z) + 2i— 1(2M( ) — )OL (M(a))) _ i—19Li 1 (M(a)).

Oam Oam % Oam ’
12:  end for

13 diy1 = trace(L;y1(M(a)));
14: for2<i<s—1do

15: Jit1,m = trace (%l(a));
16: end for
17: end for

Algorithm 2 Inversion of trace formulae with line search Newton-like method

1: Given maximum number iteration NV;

2: Given c1,co with 0 < ¢ < o < % and regularized parameter o;

3: Choose initial value ag;

4: Caculate the first N7 eigenvalues Aq1,A12,...,A1,n, as well as the first N, eigenvalues
A2.1,A22, 0005 A2 Ny

5: Compute M (em), M® (em);

6: Compute /"¢ = <Z Ly, (t1>\1_);1€), 3 L, (tNl/\l_ch), > 552(1,1A2_),1€), e
k=1 k=1 k=1

7. for 1 <k <N do

8. Caculate JM(ap_;) and 4y = <trace([~131(t1M(1) (ap_1))),- - ,trace(Ls, (tn, MY (ak_l)))> with
M(l)(em) through Algorithm 1;

9:  Caculate J®(ap_;) and 4? = (trace(isl(LlM(Q)(ak_l))),~~~ 7trace(I~/S](LN]M(Q)(ak_l)))) with
M(Q)(em) through Algorithm 1;

10 J(ag_1) = (JO;T@);

1y = (v My ®);

12: F(ag-1) =7 ="

13:  Calculate px_1 by the euqation (4.13);

14:  if o =1 satisfies the Wolfe conditions (4.12) then

HM8

E RO Aii)>;

15: Set ap_1 = 1;

16: else

17: Perform a line search to find aj—1 > 0 that satisfies (4.12)
18:  end if

19:  ag =agp—1 + g—1Pk—1;

20: end for
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