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Abstract

We consider the closure of the set of zeros of polynomials with complex coefficients
randomly chosen from a “good” compact subset of complex plane. We prove that
the closure of the set of zeros is connected. Furthermore, we apply this result to
the study of connectedness locus(M,,) of fractal n-gons and the remarkable subset
MY, Fractal n-gons and M,, are introduced by C. Bandt and N. V. Hung(2008). It
is already known that My, M9 and Mj are connected(T. Bousch(1988), Y. Himeki
under supervision Y. Ishii(2018)). We prove that for each n = 2,3,4,5,6, M,, is
connected and for all n MY is connected.

1 Introduction
In this paper, we consider the following self-similar sets which is called “fractal n-gons’
and introduced by Bandt and Hung in 2008([2]).

Definition 1.1 (fractal n-gons). Let n € N>g. Let D* := {\ € C|0 < |A] < 1}. Let
A e D*. Weset &, = exp(2mv/—1/n). For each ¢ € {0,1,...,n—1}, we set QSZL”\ :C— Chby
(b?’)‘(z) = Az + &% Then there uniquely exists a non-empty compact subset A, (\) such
that

n—1
=0

(See [8], [12]).

For examples of fractal n-gons, see Figures 1, 2, 3. As can be seen from those figures,
fractal n-gons have the rotational symmetry of order n(See [2]). For each n, we define
connectedness locus M,, of fractal n-gons and the remarkable subset M0 as the following.

M, = {\ € D*|A,(N) is connected},

M =X eDX|0 e A,(\)}.

We give a short history of M,, and M2 as we can see in [7]. In 1985, Barnsley and
Harrington defined My as the analogue of well-known Mandelbrot set([3]). They proved
M has “whiskers” as in the following theorem.

Theorem 1.2 (Barnsley and Harrington, 1985 [3]). There is a neighborhood of the points
{0.5,—0.5} in which Ms is contained in R.



Figure 3. fractal 6-gon

Figure 2. fractal 4-gon

Figure 1. fractal 3-gon

They also conjectured the existence of a non-apparent hole of Ms. In 1988, Bousch
investigated the connectedness about My and M} as in the following.

Theorem 1.3 (Bousch, 1988, 1992 [5], [6]). M3 and M are connected and locally con-
nected.

In 2002, Bandt developed some fast algorithms to draw accurate pictures of Ms, and
managed to rigorously prove the existence of a hole in Ms, thus positively answering the
conjecture of Barnsley and Harrington. Bandt first realized the importance of understand-
ing the set of interior points in My, and made the following conjecture.

Conjecture 1.4 (Bandt, interior almost dense). int(Ms) U (M NR) = M.

In 2008, Bandt and Hung introduced M,,([2]). They proved many remarkable theorems
about M,,, including the following result.

Theorem 1.5 (Bandt and Hung, 2008 [2]). If n # 2,4, int(M,,) = M,,.

In 2016, Calegari, Koch and Walker positively answering the conjecture of Bandt as
in the following theorem.

Theorem 1.6 (Calegari, Koch and Walker, 2016 [7]). int(Mz) U (M2 NR) = Ma.
In 2018, Himeki and Ishii proved the following theorem.
Theorem 1.7 (Himeki and Ishii, 2018 [11]). If n > 4, int(M,,) = M,,.

In particular, in the case n = 4, they showed the new result and the regular closedness
of M,, is completely understood. However, the study of the connectedness of M,, is
insufficient. We can see the results about the connectedness of M,, as in the following
theorem.

Theorem 1.8 (Himeki under supervision Ishii, 2018 [10]). M3 is connected.

In this paper, we consider the connectedness of M, and M" which is the natural
analogue of MY. In order to investigate the connectedness, we define some random poly-
nomials as the following.



Definition 1.9 (random polynomials and the set of zeros). Let G be a subset of C. Let
N € N>o. Let D be the unit disk. We set

N—-1
P ={1+ Z a;iz'|a; € G},

i=1
Z$ = {z € C|there exists f € P§ such that f(z) = 0},
7%=\ 7%

N2>2

We give one of main results in this paper as in the following. In this paper, for a set
A C C,cl(A) denotes the closure of A with respect to Euclidean topology on C.

Main result A. Suppose that G satisfies the following conditions.
1. 0 e G.
2. Foralla € G,—a € G.
3. For all a,b € G, there exists ¢ € GG such that ab+ ¢ € G.
4. @ is compact.

Suppose that there exists 0 < 7 < 1 such that {z € C|r < |z| < 1} C cl(Z%). Then we
have cl(Z%) ND is connected.

We give a result which is similar to Main result A as in the following.
Main result B. Suppose that G satisfies the following conditions.

1.1eG

2. For all a,b,c € G, there exists d € G such that (a —b)c+d € G.

3. G is finite.

Suppose that there exists 0 < 7 < 1 such that {z € C|r < |z| < 1} C cl(Z%). Then we
have cl(Z%) ND is connected.

We showed results above by using the methods of Bousch ([5]). We can get the following
results as the corollaries of main results A and B.

Main result C. If 2 < n <6, M,, is connected.
Main result D. For each n, MY is connected.

Remark 1.10. By main result C, we can give new results about the connectedness of
M, in the case 4 < n < 6. On the other hand, in the case M?L for each n > 3, we can
give new results about the connectedness of MY. We see the difference of results about
M,, and M? in the complexity of coefficients G which correspond to M,, or M.
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2 Preliminaries

Let {¢1,..., ok} be a general IFS on a complete metric space X. We define the address
map as follows. Let I = {1,2,...,k}. For each w = wjwows--- € I, we set w|, :=
wiws « - wy, € I™ and Puolp = Pun © Py O O Py, - Then it is well known that for each
w € I, limy, 00 @), () € X exists, where x € X. Note that this limit does not depend
on the choice of x. It is denoted by v,,. The address map p: I°*° — X is defined by w — v,,.
Note that p(I*°) = A, where A is the limit set generated by {1, ..., ¢x}. If p(w) = v, then
w is called an address of v. In the following, for each finite word w = wq ---wy,, we set
W =W WpWi ** - Wpwi -+ - wyp - -+ € I°°. In our case(See Definition 1.1), the address map
7™ has a particularly simple form as we see in the following.

Lemma 2.1 (Bandt and Hung, 2008 [2]). If w = wiwy -+ w; - € I®, 7MNw) = &,“* +
S 6N

We give some remarks about M,, and MJ.
Remark 2.2. (1) MY C M,,.
(2) M,, and MY are closed subset of D*.
(3) An(N) is connected < ¢ (An(N)) N @I (An(N)) # 0.

See [9], [13] for the general theory about connectedness of self-similar sets.

We set T := {0,1,...,n— 1}, V,, := {&°, &1, .., &" 1) and A, = {(&7 — &5)/( -
n)ld k€ I}
Lemma 2.3. M,, = {\ € D|3{a;}2; (a; € Ap) s.t. 14+ Y.5°, a; A" = 0} and

MO ={NeD|FTw =wiwy -+ s.t. 14+ Y00, &Y =0}

0

Proof. First, we prove the equation in the case M, .

0€ A,(N)
& w=wwy - € I¥.t mMNw) =0

& Jw e I® st &% + anwi“)\i =0 (By Lemma 2.1)
i=1

o0
SIwel®st. 1+ LN =0
=1

Hence we have that MY = {\ € D|Fw = wiwe -+ s.t. 1+ D00, & A" = 0}. Next, we



prove the equation in the case M,,.

A, (N) is connected
And ng’/\(An(A)) N (Z)?’A(An()\)) # () (By Remark 2.2(3))
S Iw=wiwg o, p=papn e € I8t g ("N (W) = PN (7™ (1)

sl o'}
s Jw,pel® st &°+ anwz‘/\i =&+ anui/\i
i=1 i=1

ST peI® st 1—Ln+ > (&% —&MN =0
i=1

S pel®st. 1+ (& —&M)/(1-&)AN =0
=1
& 3(ai)72; with a; € Ay st 14> ;A =0
=1

Hence we have that M, = {\ € D|3{a;}°; (a; € A,) s.t. 1+ D2, a; A" =0} O

By Lemma 2.3, M,, and M are the sets of all zeros of modulus < 1 of some power
series. We describe M,, and MY in terms of some random polynomials as in the following.

Lemma 2.4. M, = cl(Z%")ND and M? = cl(Z"») N D.

Here, for a set G C C, Z% is defined as in Definition 1.9. The proof of this lemma is
partially found in [1], [4]. The key tools in the proof is theorem of Rouché.

3 The proofs of main results

First, we prove the main results A and B. We fix G in the assumption of main results A
or B. In order to prove those results, we define some terminologies as in the following.

Definition 3.1. We set L := sup{|al, |ab], |(a — b)c||a, b, c € G} < co. and
W= {1+ aiz'|la;| < L}.
i=1

We set for each natural number N,

N-1

Wy = {1+ a;z'[|a;| < L}.
i=1

Remark 3.2. W is a compact subset of the space of all holomorphic functions on D
endowed with compact open topology and Pﬁ C Wy

Definition 3.3 (the value of power series). Let f, g € W. We often denote by (ag, a1, az, ...)
the power series with coefficients ag, a1, ag,.... If f —g = (0,0,...,a;), where a; # 0, we
define Val(f — g) := a;, that is Val(f — g) = inf{k € N|ay # 0}, where ag, a1, a2, ..., a, ...
are the coefficients of f —g. If f = g, we define Val(f — g) = oo.

Definition 3.4 (Cutting map). Let N € N>o. We define the map Cn: W — Wy by
Cn(1+ 3% a:2") =14+ SN a2



We use the following lemma which is a strong version of theorem of Rouché and found
in [5].

Lemma 3.5. Let R > 0 and € > 0 with R+e€ < 1. Then there exists N € N>3 such that for
all (f,s) e F:={(f,s) e W x B(0,R)|f(s) =0} and for all g € W with Val(f —g) > N,
there exists s’ € B(s,¢€) such that g(s') = 0.

The following is the key lemma which is found in [5].

Lemma 3.6. Let N € N>y. Let A, B € P]f,; with A # B. Then there exists a sequence of
functions on D pg, qo, P1,q15 > Pm—1, Gm—1, Pm Which satisfies the following.

(1) for each i, p; € P§.
(2) for each i, g € W.

(3) for each i, there exists f: holomorphic on D such that ¢;(z) = f(z) - pi(z) for all
z € D.

(4) for each i, Cn(gi) = pi+1.
(5) po = A,pm = B.
We give the proofs of main results A and B.

(Proofs of main results A and B). Since there exists 0 < r < 1 such that {z € C|r <
2| < 1} C cl(Z9), it suffices to show that (c1(Z%) N D) U ID is connected. We fix € > 0
with € + 7 < 1. Since (cI(Z%) ND) U dD is compact, we prove that (cI(Z%) ND) U ID is
e-connected. We take s € cl(Z9) ND. Let N be a natural number determined by r and e
in lemma 3.5. By Lemma 3.6, there exist p € P§ and sy with p(so) = 0 such that |so| > r
and s and sg are e-connected. Hence we have proved cl(Z%) NI is connected.

Next, we give the proof of main result C.

(Proof of main result C). By lemma 2.4 and Main result A, it suffices to show that the
set A, satisfies the assumption of Main result A. It is easy to show that A, contains 0,
for all a, —a € A,, and A,, is compact. We take a,b € A,,. In the case n = 4,

Ay ={0,1,v/—1, -1, —/=1,V2exp(vV/—1r/4), V2 exp(v/—137/4),
V2exp(vV/=157/4), V2 exp(v/ =177 /4)}.

Hence we have that

Ay x Ay ={0,1,v/—=1, -1, —vV/=1,V2exp(v/—17/4), V2 exp(v/—137 /4),
V2exp(V=157/4), V2 exp(v/—177/4),2,2v/—1, -2, —2/—1}.
If ab € Ay, we take 0 so that ab+ ¢ € Ay. If ab € Ay x Ay\Ay, we take ¢ = —ab/2 €
{1,v/—1,—1,—+/—1} so that ab+c € A4. Hence we show that for all a,b € Ay, there exists
¢ € Ay such that ab 4+ ¢ € Ay4. In other cases, we prove that A,, satisfies the condition
similarly.
By [2] Proposition 3,
1
NZD

Hence we have proved Main result C.

{AeCl—= < |\ <1} Ccl(Z2n).



Finally, we give the proof of main result D.

(Proof of main result D). By lemma 2.4 and Main result B, it suffices to show that the
set V,, satisfies the assumption of Main result B. It is easy to show that V,, contains 1
and V,, is finite. We take a,b,c € V,,. Since V,, is a group, we take d := bc € V,, so that
(a —b)e+ d € V,,. Hence we have proved that for all a,b, c € V,,, there exists d € V,, such
that (a —b)c+d € V,.

By [5],

1
A€ Cl—= < |A < 1} C cl(Z%2).
{ \\4/5 (Al <1} Ccl(Z7)

By [4], if n > 3, it follows that
{(AeClr, < [N < 1} Cel(Z¥),

- 1{5—4 cos %
where 7, := 5 .

Hence we have proved Main result D.
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