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Abstract

We summarize the following results of the author’s recent work [17] without
proof. For one-dimensional diffusions killed at the boundaries, the domain of at-
traction of non-minimal quasi-stationary distributions is studied. We give a general
method of reducing the convergence to the tail behavior of the lifetime via a property
which we call the first hitting uniqueness. We apply the result to Kummer diffu-
sions with negative drifts and clarify the domain of attraction of each non-minimal
quasi-stationary distribution for the processes.

1 Introduction

For a stochastic process X on some state space S with its lifetime (, a probability distri-
bution v on S is called a quasi-stationary distribution if

P,[X; €dx | (> t] =v(dzr) foreveryt >0, (1.1)

where P, denotes the underlying probability measure of X with its initial distribution v.
We say that for a quasi-stationary distribution v, a probability measure x4 on S belongs
to the domain of attraction of v if

pe(dx) =P, [Xy € dx | ¢ > ] — v(dx), (1.2)
—00
where the convergence is the weak convergence of probability distributions.

It is known that for one-dimensional diffusions, one of the following holds (see e.g., [4,
Chapter 6.2]):

(i) There are no quasi-stationary distributions.
(ii) There exists only one quasi-stationary distributions.

(i) There exists infinitely many quasi-stationary distributions.

When the case (iii) holds, quasi-stationary distributions are naturally parametrized by
an interval (0, o], where ) is the bottom of the spectrum of the generator. Quasi-
stationary distributions are ordered by the stochastic order < (recall that y < v means
p(z, 00) < v(z, 00) for every x > 0):

Uy < Uy (0 <N <A < /\0), (13)



where v, is the quasi-stationary distribution corresponding to A. We will review existence
and characterization of quasi-stationary distributions in Section 4.

For the domain of attraction of the minimal quasi-stationary distribution v,, (we also
call the only one quasi-stationary distribution for the case (ii) the minimal quasi-stationary
distribution) there are many studies (e.g., Mandl [12], Cattiaux et al. [3] and Hening
and Kolb [6]) and it is shown that the quasi-stationary distribution attracts all initial
distributions with compact support under some mild assumptions on the process X. In
contrary to this, there are few studies considering the domain on attraction of non-minimal
quasi-stationary distributions. The author only knows two papers: Lladser and San
Martin [11] and Martinez, Picco and San Martin [13].

In the present paper, we study the domain of attraction of non-minimal quasi-stationary
distributions. Before going on to state our main results, let us fix a setting. We concentrate
on the case when the killing only happens at the first hitting time at the boundaries of
the state space although the same problem can be considered under more general killing
(there are some studies considering the case (Steinsaltz and Evans [15] and Kolb and
Steinsaltz [8])). As we will see in Section 4, for existence of non-minimal quasi-stationary
distributions, it is necessary that one of the boundaries is natural in the sense of Feller.
Hence we may assume without loss of generality that the state spece S = (0,00) and the
boundary 0 is regular or exit and the boundary oo is natural. Note that in this case the
lifetime ¢ = T}, where Ty denotes the first hitting time at 0.

2 Main results

We state our main results without the proof. For the proof, see [17]. One of our main
results is a method of reducing the convergence (1.2) to the tail behavior of Ty. For a
class P of initial distributions, we say that the first hitting uniqueness holds on P if

the map P 3 p+——P,[T) € dt] is injective. (2.1)
As the class P, we shall take
Pexp = {1t € P(0,00) | P,[Ty € dt] = Xe Mdt (A > 0)}, (2.2)

the set of initial distributions with exponential hitting probabilities, where P (0, 00) de-
notes the set of probability distributions on (0, 00). The reason we consider the class Py,
is that if v is a quasi-stationary distribution, the distribution P,[T}, € dt] is exponentially
distributed. Indeed, P,[Ty > t+s | Ty > t] = P[Xi1s > 0| 1o > t] = P,[X, > 0] =
P, [TO > S].

The next theorem gives a general method to reduce the convergence (1.2) to the tail
behavior of Tj, provided that the first hitting uniqueness holds on Peyp:

Theorem 2.1 ([17, Theorem 1.1]). Let X be a = -<L-diffusion on (0,00) and set

p(de) = Py[X, € da | Ty > t). (2.3)



Assume the first hitting uniqueness holds on Pey, and
P, [Ty € dt] = e Mdt  for some X > 0 and some vy € P(0,00). (2.4)
Then for € P(0,00) and X > 0, the following are equivalent:

. . P,[To>t+s —
(i) Timy o LD — 073 (5 > ),

(i1) P, [Ty € ds] P e ds.
—00
(111) 1y — vy.
t—00

To study concrete sufficient conditions for the convergence (1.2), we introduce the
class of processes we call Kummer diffusions with negative drifts. A Kummer diffusion
Y0 =y(@8 (o >0, 3€R) is a diffusion on [0, 00) stopped upon hitting 0 whose local
generator £ = £(*8) on (0, 00) is

2

d d
0) — plaf) —

Note that the process Y = Y8 ig also called a radial Ornstein-Uhlenbeck process in
some literature (see e.g., [2] and [5]). Write

() = Ple "] (> 0), (2.6)

which is the Laplace transform of the first hitting time of 0 for Y = Y(@#_ Then ¢, is
a v-eigenfunction for L ie., L@g, = ~g, (sce e.g., [14, p.292]). We define a Kummer
diffusion with a negative drift Y = Y(@57) (4 > 0) as the h-transform of V(% by the
function g¢,, that is, the process Y (@87 is a diffusion on [0, 00) stopped at 0 whose local
generator on (0, 00) is

1
£ — plasy) _ 9_(5(0) —7)g,- (2.7)
Y

If we write
Y (@B .= /2y (e, (2.8)

then the local generator LB of Y(@B) on (0, 00) is given as

~ 1 d? 1-2a Bz ¢\ d
(fy) = 22 )y 2 2
£ 2d ( 2 7 * ’gi,) dx’ (2.9)

where g,(z) = P, [e_'ﬁo] denotes the Laplace transform of the first hitting time of 0 for
Y© starting from z. When o = 1/2 and v = 0, the process Y (/249 is the Ornstein-
Uhlenbeck process and, when g = 0, the process Y (@07 i5 the Bessel process with a
negative drift (see e.g., [5]).

A necessary and sufficient condition for existence of non-minimal quasi-stationary dis-
tributions for general one-dimensional diffusions will be given by Theorem 4.3. Applying
the theorem to Kummer diffusions with negative drifts, we obtain the following:



Proposition 2.2 ([17, Proposition 5.1]). We classify YY) = Y@ (o >0, B € R, v >
0) into the following five cases by B and :

Case 1: pB=0, ~v>0.
Case 2: (>0, ~>0.
Case 3: (<0, ~>0. (2.10)
Case 1’ =0, =
Case 3’: <0, ~v=
Then non-minimal quasi-stationary distributions exist if and only if one of the Case 1-3

in (2.10) holds.

The following theorem gives a class of initial distributions converging to each non-
minimal quasi-stationary distributions, where L'(I, ) denotes the set of integrable func-
tions on [ w.r.t. the measure v. For the definition of quasi-stationary distribution v, and
the spectral bottom )\(()7), see Section 4.

Theorem 2.3 ([17, Theorem 1.2]). Let X = Y = Y@57 (o >0, B € R, v > 0)
satisfying one of the Case 1-3 in (2.10) and let pp € P(0,00). Then the following holds:

(i) If the Case 1 holds and p(dx) = p(x)dz for some p € L'((0,00),dx) and

log p(x) ~ (5 — 2IVE (= o) (2.11)
for some 0 < 0 < 2,/7, then it holds

Lt E) Ux (212)

with A = v — §%/4 € (0, )\(()7)), where )\(()7) =~ > 0 is the spectral bottom.
(ii) If the Case 2 holds and
p(x,00) ~ x B (2 — o0) (2.13)
for some 0 < 0 < a+ /8 and some slowly varying function £ at oo, then it holds

e —— s (2.14)

with A = B(a—0) + v € (0, )\(()7)), where )\(()7) = aff +~ > 0 is the spectral bottom.
(iii) If the Case 3 holds and
p(x,00) ~ 7B (2 = o0) (2.15)
for some 0 < 0 < 1—+/B and some slowly varying function { at co. then it holds

je — vy (2.16)
t—o00
with A = —B(1 — 8) + v € (0, A7), where \Y) = —B+~ > 0 is the spectral bottom.

We will compare Theorem 2.3 with previous studies in Remarks 3.2 and 3.4.



3 Comparison with previous studies

There are many studies on quasi-stationary distributions as we saw in Section 1. As
far as the author knows, however, most of them studies the minimal quasi-stationary
distributions and there are only two studies considering the domain of attraction of non-
minimal quasi-stationary distributions; Martinez, Picco and San Martin [13] and Lladser
and San Martin [11].

Firstly, Martinez, Picco and San Martin [13] studied Brownian motions with negative
drifts and showed convergence to non-minimal quasi-stationary distributions under the
assumptions on tail behavior of the initial distribution:

Theorem 3.1 ([13, Theorem 1.1]). Let B; be a standard Brownian motion and let oo > ()
and consider the process

Xt = Bt — ot. (31)

For an initial distribution p on (0, 00) assume p(dx) = p(x)dx for some p € L'((0, 00), dx)
satisfying

logp(z) ~ —(av = d)x  (x — o0) (3.2)

for some 6 € (0,«). Then it holds

P.[X: € dz | To > 1] — vy(dz), (3.3)
—00
with
A= (a?—6%)/2 and wvy(dx) = Cye ““sinh(zva? — 2\)dx (3.4)

for the normalizing constant Cy.

Remark 3.2. When o = 1/2,8 = 0 and v > 0, the process V2V (1/201) is a Brownian
motion with a negative drift —,/2vt. Hence this theorem is generalized by (i) of Theorem
2.3.

Secondly, Lladser and San Martin [11] studied Ornstein-Uhlenbeck processes:

Theorem 3.3 ([11, Theorem 1.1)). Let o > 0. Let X be the solution of the following
SDE:

dXt = dBt — OéXtdt, (35)

where B is a standard Brownian motion. For an initial distribution p on (0,00) assume
p(dz) = p(x)dz for some p € L((0,00),dx) satisfying

p(x) ~ 272 4(x) (2 — o0) (3.6)



for some 6 € (0,1) and a slowly varying function  at oo. Then it holds

P.[X: € dx | Ty > t] — vy (dx) (3.7)
with
A=a(l—0) and vy(dx) = Cyip_x(z)e " da (3.8)

for the normalizing constant Cy, where u = _ denotes the unique solution for the
following differential equation:

1 2 d . d
szt —oru= A, lmoa(r) =0, lim ——u(r) =1 (z€(0,00)).  (39)

Remark 3.4. In Theorem 2.3 (ii), if pu(dz) = p(z)dz for p € L*((0, 00), dx) and
p(x) ~ x 2 E () (2 — o0), (3.10)

for a slowly varying function ¢, then (2.13) holds from Karamata’s theorem [1, Proposition
1.5.8]. Hence (ii) of Theorem 2.3 is an extension of [11, Theorem 1.1].

4 Existence and characterization of quasi-stationary distribu-
tions

Here we review some previous studies on quasi-stationary distributions.

Let X be a -£-L_diffusion on I = [0,b) or [0,b] (0 < b < c0) stopped at 0. We assume
P, < o0 >0 (z €1\ {0}, ye[0,0)), (1)

where T}, denotes the first hitting time of y. We also assume that the boundary b is not
exit in the sense of Feller and that the boundary b is reflecting when it is regular. Note
that from (4.1), the boundary 0 is regular or exit. Define a function u = 1, as the unique
solution of the following equation:

dcrlni (x) = u(x), mli)rilou(w) =0, xgrﬁod—iu(i) =1 (zre(0,b),reR). (4.2)
Since the boundary 0 is regular or exit, the function v, always exists. The operator
L= —d—d— defines a non-negative definite self-adjoint operator on L?(I,dm) := {f : [ —
R | [;|f[’dm < oo}. Here we assume the Dirichlet boundary condition at 0 and the
Neumann boundary condition at b if the boundary b is regular. We denote the infimum
of the spectrum of L by Ay > 0.

When the boundary b is not natural, it is known that there is a unique quasi-stationary
distribution (noting that Takeda [16] showed the corresponding result for general Markov
processes with the tightness property):



Proposition 4.1 (see e.g., [10, Lemma 2.2, Theorem 4.1]). Assume the boundary b is
not natural. Then it holds Ay > 0 and the function \_,, is strictly positive and integrable
w.r.t. dm and, there is a unique quasi-stationary distribution given as

Vo (dx) = Mp_yo(x)dm(z), Py, [Th € dt] = Aoe 0ldt. (4.3)
Moreover, for every probability distribution u on (0,b) with a compact support, it holds

He = D (44)

We now assume the boundary b is natural. Then it holds

Po[Ty <oc] =0 (2 € (0,0)), (4.5)
and
SO0 s el <ol (0<a<M<b) (4.6)

(see e.g., Ito [7]). Taking limit M — b, we have from (4.5)

s(x) —s(0) ~
—s(b) —50) =P,[Ty = ). (4.7)
Hence it follows

P,[Th <oo] =1 forsome /any z >0 <& s(b) = 0. (4.8)

Since P, [Ty € dt] follows an exponential distribution, by (4.1) it holds P, [Ty = oo] < 1
and therefore P, [Ty = oo] = 0, which implies s(b) = oco. We recall the following good
properties for the function ):

Proposition 4.2 ([4, Lemma 6.18]). Suppose the boundary b is natural and s(b) = oc.
Then for A > 0 the following hold:

(i) For 0 < X\ < )\, the function ¢_y is strictly positive on I \ {0} and
b
1= )\/ Y_z(z)dm(z). (4.9)
0
(ii) For A > Xg, the function v _, change signs on I.

Now we state a necessary and sufficient condition for existence of non-minimal quasi-
stationary distributions:



Theorem 4.3 ([4, Theorem 6.34] and [9, Theorem 3, Appendix I]). Suppose the boundary
b is natural. Then a non-minimal quasi-stationary distribution exists if and only if

X >0 and s(b) = . (4.10)
This condition is equivalent to
m(d,b) < oo for somed € (0,b) and limsup s(z)m(z,b) < co. (4.11)
x—b

In this case, a probability measure v is a quasi-stationary distribution if and only if

v(idr) = Mp_ (x)dm(x) =: vy(dx), P, |1y € dt] = e Mdt for some 0 < X < .
A
(4.12)

Here we note that as [4] only dealt with the case the boundary 0 is regular, the proof
also works in the case the boundary 0 is exit.
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