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1. INTRODUCTION

This is a summary of the well-posedness results in our paper [3]. We study the
Cauchy problem of the energy critical Hardy-Sobolev parabolic equation

{atu — Au= [z ulZ 02y, (tx) € (0,T) x RY,

o(0) — (1.1)

in spatial dimensions d > 3 with initial data u, in the energy space H'(R?), defined
by

2d

Y (RY) = {f € LeRY) ; || fllpm = (/R !Vf@)\?dxy < OO} v eE Ty

where T'> 0, v € [0,2), and 2*(7) is the critical Hardy-Sobolev exponent, i.e.,
2(d =)
2% = —
) ==
Here, 0, := 0/0t is the time derivative, V := (0/0x1,...,0/0x,) is the vector dif-
ferential operator, A = Z;l:l 9?/0x? is the Laplace operator on R?, u = u(t,z) is

an unknown complex-valued function on (0,7) x R?, and ug = ug(z) is a prescribed

complex-valued function on R?. The total energy (or simply energy) functional E.,
is defined by

1 1 |f(z)]Z ) -
B = M =gy [ e e R,

where the first and second terms correspond to the kinetic and potential energies,
respectively. The energy of solution is (formally) dissipated:

d 2
() == | 19w(t.) dz <0. (1.2)

Moreover, the equation (1.1), and the total energies, kinetic energies, and potential
energies of its solutions are invariant under the scaling transformation u — wu, for
A > 0, which is defined by

ur(t,z) == )\2*2<;>7—2u()\2t, ) = )\%u()ﬁt, Az).

Thus, the problem (1.1) is called energy critical, and the space H'(RY) (as well as

L% (R%)) is often called a scaling critical space. We say that the problem is energy
1
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subcritical (energy supercritical resp.) if the power p of the nonlinearity |z|~7|ulP~?u
is strictly less than (strictly greater than resp.) the critical exponent 2*(). The case
~ = 0 corresponds to a heat equation with a standard power-type nonlinearity, often
called the Fujita equation, which has been extensively studied in various directions.
In the case 7 # 0, the equation (1.1) is not invariant under the translation with
respect to space variables, owing to the existence of the space-dependent potential.

Our interest is to study the problem on local well-posedness, i.e., existence of local
in time solution, uniqueness, and continuous dependence on initial data, for (1.1).
The problem has been studied in the space LY(R?) and the space of continuous
bounded functions on R? (see [1,2,8,9]). In particular, Ben Slimene, Tayachi, and
Weissler proved local well-posedness, except the uniqueness, for (1.1) in the scaling
critical space L% (R?) (see [1]). Recently, the unconditional uniqueness for (1.1) in
C(]0,T7; L%=(R?)) has been proved by Tayachi [8], and local well-posedness has been
studied in scaling critical Besov spaces by Chikami [2]. This paper is devoted to
studying well-posedness for (1.1) and more general nonlinear heat equations in the
energy framework. Similarly to these previous works, we can obtain the local well-
posedness in the energy space H'(R?), but a more detailed argument is required to
justify the energy identity (1.2).

2. STATEMENT OF RESULTS

Let Q be a domain of R? which contains the origin 0, and 99 denote the boundary
of €. We consider the Dirichlet problem of more general nonlinear heat equation

Owu— Au= F(x,u), (t,x)€ (0,T)xQ,
uloo = 0, (2.1)
u(0) = up,
where 7" > 0 and F' : Q x C — C. We regard C as the two-dimensional vector
space R?, and assume that F(z,-) € C'(R?* R?) with F(z,0) =0 and
F(e,2) = Fla, 2] < Clal (] + 17O =2 (22

for almost everywhere x € ) and any z;, zo € C. We write the problem (2.1) in the
integral form

t
ult, ) = (eup) () + / TR R (- u(r, ) () dr (2.3)

0
for any t € [0,T) and almost everywhere = € Q, where {e!®2},. is the semigroup
generated by the Dirichlet Laplacian —Ag with domain

D(=Aq) ={f € Hy(Q) : Af € L*(Q) in the distribution sense} .

The space C§°(£2) is the set of all C*°-functions on € having compact support in
Q, and the space Hj () is the completion of C§°(Q) with respect to the Sobolev
norm ||-|| g1 (o). We discuss the local well-posedness, small-data global existence, and
dissipation of global solutions for (2.1) in the scaling critical spaces L% (), H'(Agq)
and H'(Ag). Here, the Dirichlet Laplacian —Ag is a non-negative and self-adjoint
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operator on L2(Q), and H'(Aq) and H'(Agq) are Sobolev spaces associated with
—Agq and their norms are given by

[fllmrag) = (I = D)2 fllr2) and  [[fllg1aq) = I(=20)% fll120),

respectively, where I is the identity operator on L?(€2). For these precise definitions,
we refer to Definition 1.1 in [4]. Note that H'(Aq) = H}(2), H'(Age) = HY(R?),
and H'(Aga) = H'(RY). For convenience, we set

X = ch(Q)’ Hl(AQ) or Hl(AQ).
To state our results, let us introduce some notations.

Definition 2.1. Let T' € (0,00], ¢ € [1,00], and a € R. The space K?*(T,() is
defined by

Ke(T,Q) == {ue 2'([0,T) x Q) ; |lullgser o) < oo for any T" € (0,T)}

endowed with )
lullcnaqro) = sup #26D" ul| Lo,
te[0,T
where 2'([0,T) x Q) is the space of distributions on [0,7) x €. We simply write
KT, Q) = K*T,Q) when a = 0, and K2%(Q) = K%%(00,Q) and K(Q) =

K9(00,Q) when T' = oo if they do not cause a confusion.

Hereafter, we assume that ¢ € (1,00) satisfies

1 2 1 1
T T X =L%(Q), 2.4
« d20-10 ¢ 4 ) (24)
and
1 1 11 . -
o< i X =H'Ag) or H'Y(Ag). (2.5)

g d2*(v)-1) ¢ ¢
Let us give the notion of a mild solution.

Definition 2.2. Let T € (0,00] and uy € X. A function u : [0,7) x R? — C
is called an X -mild solution to (2.1) with initial data w(0) = wg if it satisfies
ue C([0,T); X) N KYT, ) and the integral equation (2.3) for any ¢ € [0,7") and
almost everywhere € R?. The time 7T is said to be the maximal existence time,
which is denoted by Tinax = Tmax(uo), if the solution cannot be extended beyond
[0,7). More precisely,
T T There exists a unique solution u to (2.1) 06
max = >0Uj5 . . .. .
(o) := sup in C([0,T]; X) N KYT, ) with initial data ug (2.6)
We say that u is global in time if T},,x = +00 and that u blows up in finite time
otherwise.

Then we have the following:

Theorem 2.3. Let d >3 and 0 < v < 2. Then the following statements hold:
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(i) (Ezistence) For any ug € X, there exists a mazimal existence time Tpax =
Tmax(uo) € (0, 00] such that there exists a unique mild solution

w € C(0, Tran); X) N KT, )

to (2.1) with u(0) = uy.

(ii) (Uniqueness in KU(T,$2)) Let T > 0. If uy,us € KT, Q) satisfy the integral
equation (2.3) with uy(0) = ug(0) = ug, then uy = uy on [0,77.

(iii) (Continuous dependence on initial data) The map Tyax : X — (0,00] is
lower semicontinuous. Furthermore, for any ug,vo € X and for any T <
min{ T hyax (o), Tmax (Vo) }, there exists a constant C' > 0, depending on ug,
vy and T, such that

sup [[u(t) — v(t)[x + lu = vllkara) < Cllug — vollx-
te[0,T
(iv) (Blow-up criterion) If Tyax < 400, then ||ul|ca(z...0) = 0°.
(v) (Small-data global existence and dissipation) There exists p > 0 such that if
up € X satisfies
le* 2ol caey < p,

then Thax = +00 and

ullca) <2p  and }L%g”u(t)llx =0.

(vi) The following statements are equivalent:
(@) Tmax = +00 and ||u||xa) < 0o.
(b) limys,.. fJu(t)]lx = 0.
(€) limysr 262 fu () ooy = 0.
(vil) Let d = 3 and X = H'(Aq) or HY(Aq). Suppose additionally that q
satisfies

1 1 1
- <, 2.7
@ 12(2—7) ¢ 27)

and that I satisfies
|0-F (2, 2)] < Cla| 77|72 (2.8)

for almost everywhere x € ) and any z € C. Then, for any ug € X, there
exists a mazximal existence time Tpax = Tmax(ug) € (0,00] such that there
exists a unique mild solution

u € C([0, Tmax); X) N K (Tinax, ) and  dpu € K3 (Tinax, Q)
to (2.1) with u(0) = ug. Furthermore, the solution u satisfies
O € K*HNTax, Q).

The statements (i)—(vi) are known, but the last statement (vii) is a new ingredient,
which is utilized to justify the energy identity in Theorem 2.6 below. The proof is
given in Section 3.
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Remark 2.4. The statement (vii) in Theorem 2.3 implies that the maximal exis-
tence time is written as
There exists a unique solution u to (2.1)

Tmax(uo) =sup T > 0; in C([0,T); X) N KT, ) and dyu € K>!(T, )
with initial data wug

Remark 2.5. It is generally impossible to obtain classical solutions for (1.1). How-
ever, mild solutions u to (1.1) given in Theorem 2.3 are continuous and bounded on
R for each t € (0, Tiax), and belong to

w € C22((0, Toax) % (RE\ {0}) N C2

loc loca((()’ Tmax) X Rd)

for o € (0,2—7) by the regularity theory for parabolic equations. Here, C’gf([ xR%)
is the space of functions that are locally Holder continuous with exponent a > 0 in
t € I and exponent 3 > 0 in x € R? for an interval I C (0,00). See Remark 1.1 and

Proposition 3.2 in [1] (see also the remark after Definition 2.1 in [9] on page 563).

Moreover, we introduce the energy functional E, o : Hj(Q) — R associated with
(2.1) with nonlinearity F(z,u) = |z|~"|u>’®~2y as follows:
) 2*(7)

1 1

The energy identity (1.2) plays a crucial role in studying (2.1) in the energy frame-
work, and is formally obtained by multiplying the equation (1.1) by O,u and inte-
grating it over R?. However, the validity of (1.2) is non trivial. We have the result
on the validity.

Theorem 2.6. Let uy € Hl(AQ) and to € (0, Thax) . Then, the mild solution u to
(1.1) with u(0) = ug satisfies the energy identity

t
E, qo(u(t)) + / / Ou(T, 2)|* dedr = E, q(u(to)) (2.9)
to J
for any t € [to, Tmax) . Furthermore, the energy inequality
E; o(u(t)) < B, 0(uo) (2.10)

holds for any t € [0, Tynax) -

The proof is given in Section 4.

3. PROOF OF THEOREM 2.3

3.1. Key estimates. To prove Theorem 2.3, let us prepare some estimates for
{et9}, 9. We recall the linear estimates with weights in the case Q = R? (see
Proposition 2.1 in [1]). By combining these linear estimates with the pointwise
estimates for the integral kernel G (¢, z,y) of et?e:

|z — y|?
At

(see, e.g., Ouhabaz [7]), we have smoothing and decay estimates for {e**2},5,.

0 < Golt,z,y) < (47rt)_% exp <— ) , t>0, aex,ye€ (3.1)
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Lemma 3.1 (Lemma A4 in [3]). Let d > 1, 0 < v < d and s > 0. Then, the
following statements hold:

(i) For any 1 < p; < ps < o0, there exists C' > 0 such that

s _d(1l _1\_s
|(=20)2e™0 £ oy < OF 2557772 fl| s oy
for any t >0 and f € LP*(9).
(ii) Suppose
1 3 1
0<—< J +— <L

D2 d p

Then, there exists C' > 0 such that

s+

; _ _d(1l_1y_sty
I(=Aa)ze (|- [ )y < CL 20575 fllny
for any t >0 and f € LP(9).
Based on this lemma, we have the following:

Lemma 3.2 (Lemma A.5 in [3]). Let d > 3, 0 <y <2, and T > 0. Then, the
following statements hold:

(i) Assume q satisfies (2.4). Then, there exists a positive constant Cy depending
only on d, v and q such that

H /ot TR (- u(r)) - F(-,U(T))}dT‘

< maX{HUHm(T,sz)7 HUHKQ(T,sz)}2*(7)_2HU - UH/C‘I(T,Q)

holds for any u,v € KI(T, Q).
(ii) Assume q satisfies (2.5). Then, there exists a positive constant Cy depending
only on d, v and q such that

H /ot TP u(r)) F(',U(T))}dTH

< (Y maX{HUHm(T,m, HUHKQ(T,sz)}2*(7)_2HU - UH/C‘I(T,&Z)

holds for any u,v € KI(T, ).
(iii) Assume q satisfies (2.4) and

1 4—d - 1

g 2d(2*(v)-2) ¢
and F' salisfies the additional assumption (2.8). Then, there exists a positive
constant Cs depending only on d, v and q such that

t
‘ Ot/o e(t_T)AgF(., u(T)) dT‘ s (T (1) 53
2% -1 2% —2 '
< G (lluoll 3.0y + el I 9etlces ey

holds for any ug € L9(Q2) and for any u € K9(T,QY) satisfying the integral
equation (2.3) and Ou € K4Y(T, Q).

Ka(T,Q)NL ([0,T];L4e (£2))

L=([0,T];:H (~Aq))NK2(T,0)

(3.2)
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Remark 3.3. Note that the statement (iii) in Lemma 3.2 holds only if d = 3, as it
is possible to take ¢ satisfying both (2.4) and (3.2) only if d = 3. This statement
(iii) is a key tool in the proof of (vii) in Theorem 2.3, and (3.2) yields the additional
assumption (2.7) of (vii) in Theorem 2.3.

3.2. Proof of Theorem 2.3. The proofs of (i)—(vi) are obtained by combining
Lemma 3.2 and the standard fixed-point argument (see [1] and also [3]). So, we may
omit the proofs. We give only a sketch of proof of (vii) when X = H'(Ag). Take
p >0 and M > 0 such that

* * 1
p+ O M*IL< M and max{Cy,Cs}M* M2 < 3 (3.4)

where C; and Cj are the same constants as those in (i) and (iii) of Lemma 3.2,
respectively. Let A > 0. Suppose that uy € H'(Ag) and T > 0 satisfy

||U0HH1(AQ) <A and ||etAQU0HICq(T,Q) < p. (3.5)
Define the map ®,, by

t
Dy, [u] (1) := ey —|—/ et=IRe R (g u(T)) dr
0

for t € [0,T]. Given B > 0, we define
Vo= {u; [Jullkaro < M, 0wl < B},

equipped with the metric d(u,v) := ||u — v|/ker0). Then, (Y,d) is a complete
metric space. By (i) in Lemma 3.2, (3.4) and (3.5), we have

1P ] llco () < Nl uollicairy + Callullaipgy < p+ CLM* D7 < M
for any v € Y, and
1@y [u] = P[] || ico (1 02) < Crmax{[|ull ooy, [[vllicacoy YO 72w = vllkairo)
< CMP 72w — vl ar o)

< §HU — V||kca(r,0)

for any w,v € Y. On the other hand, by (iii) in Lemma 3.2, (3.4), and (3.5), we
estimate

. 2% —1 2% —2
100 [l 21 .0y < 10001 .y + Cs (o | Fpayy + el |0t o )

2% 2 2
< Cu(lluoll g1 am + luoll%00) + Callulle o 10l gy

H'(Aq)
< C’4(A—|—A2*(7) Y4+ CsM* -2p
B B
—+—=0D5
2+2

for any u € Y, where we take B = 20,(A + A2’ ™~1), Summarizing the estimates
obtained so far, we see that ®,, is contractive from Y into itself. Therefore, Ba-
nach’s fixed-point theorem allows us to prove that there exists a function v € Y
such that u = &, [u]. Finally, it follows from (ii) and (iii) in Lemma 3.2 that
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uw e C(0,7): H(Ag)) and du € K*Y(T,Q). The proof of Theorem 2.3 is fin-
ished. U

4. PROOF OF THEOREM 2.6

In this section, we give a sketch of proof of Theorem 2.6. Let uy € Hl(AQ)
and u be a mild solution to (2.1) with «(0) = ug. To prove the validity of (2.9),
we need to know the integrability of dyu, Aqu, and |z|~7|u[* =2y, To begin
with, we check the integrability of the nonlinear term. Let ; := QN {z| < 1}
and Qs := QN {|z| > 1}. It is easily seen from the argument of proof of (i) of
Proposition 3.2 in [1] that

u(t) € L>(Q) for any t € (0, Tinax),
which implies that

|l 0 € Lis, (0, Tnax); L7 (1)) (4.1)
for any 1 < oy < d/v. Since u € L*>(0,T; L%(£2)), Holder’s inequality implies
2| 7 u> 720 e L°((0,T); L2 () (4.2)

for any o9 > 2d/(d + 2). Let us divide the proof into two cases:
(a) d>4ord=3and 0 <7y <3/2;
(b) d=3and 3/2 <~y <2.
Case (a): Let to € (0, Tiax). Then, we have u(ty) € H'(Aq) by Theorem 2.3, and
2]l € Lie([to, Tmax); L*(2)) (4.3)

by (4.1) and (4.2) provided that d > 4 or d = 3 and 0 < v < 3/2. Hence, we
can apply the maximal regularity for parabolic equations (see Theorem 1.4 in [5])
to obtain

O, Aqu € L ([to, Tmax); L*(52)). (4.4)
Then, (4.3) and (4.4) ensure the energy identity (2.9) for any ¢ € [to, Tiax) -
Case (b): It follows from (vii) in Theorem 2.3 and (4.2) that
Ou, Au, |z u P2 e Line((0, Tinax); L*(Q2)).

Hence, multiplying the equation (1.1) by d,u and integrating it over [to,t] x Qs are
justified. On the other hand, we see from (vii) in Theorem 2.3 and (4.1) that

Oyu € L%oc((OvaaX); L3(92)) C L%oc((OvaaX)Q LQ(Q2))7
2|2 2y € L2 ((0, Tinax); L2 ().

loc

Then, we also have

Au € L1200(<O7 Tmax); L% (QQ))7
as u satisfies the differential equation (1.1) by Remark 2.5. Hence, multiplying (1.1)
by Ou and integrating it over [to,t] x Qo are also justified. The above argument

ensures the energy identity (2.9) for any ¢ € [to, Tinax) -
Finally, it follows from (2.9) that

E,a(u(t)) < Eyo(u(to)) (4.5)
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for any ¢y € (0,Tmax). Since the energy E, q(u(t)) is continuous in ¢ € [0, Tinax) .
we have

Eya(u(t)) < Eya(uo)
by taking the limit of (4.5) as ¢, — 0. Thus, we conclude Proposition 2.6. O

Remark 4.1. The proof of case (a) cannot be applied to the case (b) as the nonlinear
term does not necessarily satisfy (4.3) in the case (b). For example, we consider the
case 0 = RY. Then, the ground state W, (i.e, the minimal energy non trivial
solution to the corresponding stationary problem) given by

d—2 o _d-2
Wy (@) = ((d = 7)(d = 2))27 (1 + |2[*77) 2= (4.6)
(see [6]), which is also a mild solution to (1.1), does not satisfy (4.3), as
AW, = |z|7WZ =1 € LA(R?) if and only if d >4 or d =3 and 0 < v < 3/2.

In contrast, we can perform the argument in the proof of case (b) only if d = 3, as
it relies on (vii) in Theorem 2.3 (see Remark 3.3).
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