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1 Introduction

This paper concerns a cocycle generated by Markov operators, called a Markov operator cocycle. Let
(X, A,m) be a probability space, and L'(X,m) the space of all m-integrable functions on X, endowed
with the usual L'-norm | - ||1(x). An operator P : L'(X,m) — L*(X,m) is called a Markov operator if

P is linear, positive (i.e. Pf > 0 m-almost everywhere if f > 0 m-almost everywhere) and

/Pfdm:/ fdm  for all f € L'(X,m). (1)
X X

Markov operators naturally appear in the study of dynamical systems as Perron-Frobenius operators; see
(3), Markov processes as integral operators with the stochastic kernels of the processes, and random dy-
namical systems in the annealed regime as integrations of Perron-Frobenius operators over environmental
parameters. For these deterministic/stochastic dynamics, {P" f},>0 is the evolution of density functions
of random variables driven by the system. We refer to [8, 10].

A Markov operator cocycle is given by compositions of different Markov operators which are provided
with according to the environment {¢"(w)},>¢ driven by a measure-preserving transformation o : @ — Q

on a probability space (2, F,P),
Nx Qx LYX,m) —» L"(X,m) : (n,w, ) — Pon-1(w) 0 Pyn—2(yo-- 0P, f
(see Definition 1.1 more precisely). So, in nature it possess two kinds of randomness:
(i) The evolution of densities at each time are dominated by Markov operators P,,

(ii) The selection of each Markov operators is driven by the base dynamics o.

The aim of this paper is to introduce our results how the observation of the randomness of the state space
and the environment influences statistical properties of the system, and to give a step to understanding

more complicated phenomenon in multi-stochastic systems.



Our focus lies on the mixing property. Recall that a Markov operator P : L*(X,m) — L*(X,m) is

/XP”fgdm—>/dem/ngm as n — o0 (2)

for any f € L'(X,m) and g € L*°(X,m) when Plx = lx (see Remark 1.3 for more general form).

said to be mizing if

Due to (1), this means that two random variables P f and g are asymptotically independent so that the
system is considered to “mix” the state space well. In other words, the randomness of P in the sense of
mixing can be seen through the observables f and g. Hence, for Markov operator cocycles, the strength
of the dependence of the observables on w expresses how one observes the randomness of the state space
and the environment. Furthermore, more directly, we can consider different kinds of mixing properties
according to whether the environment w is observed as a prior event to the observation of f,g. According
to these viewpoints, we will introduce six definitions of mixing for Markov operator cocycles (Definition
1.2), and show that four of them are equivalent when € is a compact topological space, while at least two
of them are different. In the case when the Markov operator cocycle is generated by a random dynamical
system over a mixing driving system, we also show that all of them imply the (conventional) mixing
property of the skew-product transformation induced by the random dynamical system.

We further investigate exactness for Markov operator cocycles. Since the observable g in (2) does not
appear in the definition of exactness for a Markov operator P (recall that, when Plx = 1x, P is said to
be exact if nli}rrgo HP"f — fX fdeLl(X) =0 for all f € L*(X,m); see also the remark following Definition
1.5), in contrast to the mixing property, we only have one definition of exactness for Markov operator
cocycles (Definition 1.5). We will show that Lin’s criterion for exactness can be naturally extended to the
case of Markov operator cocycles (Section 3), and finally, in the class of asymptotically periodic Markov
operator cocycles, we prove Lasota-Mackey type equivalence between mixing, exactness and asymptotic
stability (Section 4). See [13] for more precise descriptions including the proofs. Moreover, a random

invariant density for Markov operator cocycles is discussed in [14].

1.1 Definitions of mixing and exactness
Let D(X,m) and L}(X,m) be subsets of L!(X,m) given by
D(X,m) = {feL'(X,m):f>0m-almost everywhere, | f|z1x) =1},

{feLl(X,m) : /dem—()}.

Note that P : L'(X, m) — L'(X,m) is a Markov operator if and only if P(D(X,m)) C D(X,m).

One of the most important examples of Markov operators is the Perron-Frobenius operator induced by

Ly(X,m)

a measurable and non-singular transformation 7': X — X (that is, the probability measure m o T~ ! is
absolutely continuous with respect to m). The Perron-Frobenius operator Lr : L'(X,m) — L' (X, m) of
T is defined by

/ Lngdm:/ fgoTdm for f € L'(X,m) and g € L™ (X, m). (3)
p's p's

Recall that (Q,F,P) is a probability space, and o : @ — Q is a P-preserving transformation. For a
measurable space X, we say that a measurable map ® : Ny x Q x ¥ — ¥ is a random dynamical system

on Y over the driving system o if

P =idy and (™ =0, 0 (M



for each n,m € Ny and w € 2, with the notation <pfu") = ®(n,w,-) and ow = o(w), where Ny = NU {0}.
A standard reference for random dynamical systems is the monographs by Arnold [2]. It is easy to check
that

PS5 = Pon-14, 0 Pon-2, 0+ 0 (4)

with the notation ¢, = ®(1,w, ). Conversely, for each measurable map ¢ : Q@ x 3 = ¥ : (w, ) — @, (z),
the measurable map (n,w,z) — cp&n)(x) given by (4) is a random dynamical system. We call it a random
dynamical system induced by ¢ over o, and simply denote it by (,c). When ¥ is a Banach space and
Y, : 2 — X is P-almost surely linear, (¢, 0) is called a linear operator cocycle. We give a formulation of

Markov operators in random environments in terms of linear operator cocycles.

Definition 1.1. We say that a linear operator cocycle (P,c) induced by a measurable map P : Q X
LY(X,m) — LY(X,m) over o is a Markov operator cocycle (or a Markov operator in random environ-

ments) if P, = P(w,-) : LY(X,m) — L*(X,m) is a Markov operator for P-almost every w € (2.

Let (n,w, f) = PS" f be a Markov operator cocycle induced by P : Q x L'(X,m) — L*(X,m) such
that P,, = P(w,-) is the Perron-Frobenius operator Lt associated with a non-singular map T, : X — X

for P-almost every w. Then, it follows from (3) that P-almost surely
/ P fgdm = / fgoTMdm, for f e LY(X,m) and g € L=(X,m), (5)
X X

where TUE”) =Ton 1,0T4m 2,0---0T,.
We are now in place to give definitions of mixing for Markov operator cocycles. Let K be a space

consisting of measurable maps from Q to L (X, m).
Definition 1.2. A Markov operator cocycle. (P, o) is called

1. prior mizing for homogeneous observables if for P-almost every w € Q, any f € L}(X,m) and
g € L*>(X,m), it holds that

lim P fgdm = 0; (6)

n—00 X

2. posterior mizing for homogeneous observables if for any f € L{(X,m), g € L>(X, m) and P-almost
every w € Q, (6) holds;

3. prior mizing for inhomogeneous observables in K if for P-almost every w € Q, any f € L} (X, m)
and g € K, it holds that

n—r oo

lim P fgong,dm = 0; (7)
X

4. posterior mizing for inhomogeneous observables in K if for any f € L{(X,m), g € K and P-almost
every w € €, (7) holds.

In the prior case (the posterior case), the observation of the environment w is a prior event (a posterior
event, respectively) to the observation of f and g. As the class of inhomogeneous observables K in

Definition 1.2, we will consider the following two fundamental classes.
(i) B(Q, L*>®(X,m)): the set of all bounded and measurable maps from Q to L (X, m).

(ii) C(Q, L>(X,m)): the set of all bounded and continuous maps from 2 to L>*(X,m) (when 2 is a
topological space and F is its Borel o-field).



Remark 1.3. The above definitions need not require an invariant density map for the Markov operator
cocycle (P,o). We say that a measurable map h : Q@ — D(X,m) is an invariant density map for (P, o)
if P hy, = hyy holds for P-almost every w € Q where h, = h(w). Now we assume that there exist an

invariant density map h : Q@ — D(X, m) for (P, o) such that for P-almost every w € §,
lim m (supp P™M1x \ supp Pbgn)hw) =0. (8)
n—oo

Then by (8) and the fact that PS™ f — hyny, = PSV(f — hy) € LL(X,m) for f € D(X,m), one can easily
check that (P, o) is prior mixing for homogeneous observables if and only if for P-almost every w € €,
any f € D(X,m) and g € L*(X,m), it holds that

lim (Pgﬂ - hm) gdm = 0.

n—r oo X

Furthermore, when F,, is the Perron-Frobenius operator L1, associated with a non-singular map 7;,, : X —
X, by (5), it is also equivalent to that for P-almost every w € Q, any f € L' (X, u,) and g € L>®(X,m),

/ fgoT™dpu, —/ fd,uw/ gdpgn, — 0 as n — oo, (9)
X X X

where p,, = h,m. See also Remark 2.6. Moreover, we can replace “for any f € L'(X, u,)” in the previous
sentence with “for any measurable function f : Q x X — R such that f, = f(w,-) € L*(X, i) P-almost
surely”, and “f” in (9) with “f,”. Similar equivalent conditions can be found for other types of mixing
in Definition 1.2.

All kinds of mixing in Definition 1.2 were adopted in literature, especially in the form of (9) to discuss
mixing for random dynamical systems. For instance, we refer to Baladi et al. [4, 5] and Buzzi [6] for the
definition 1, Dragicevié et al. [7] for the definition 2, Bahsoun et al. [3] for the definition 3, and Gundlach
[9] for the definition 4. Moreover, in the deterministic case (i.e. Q is a singleton), all the definitions are

equivalent to the usual definition of mixing for a single Markov operator [10].

Remark 1.4. Another natural candidate for the class of inhomogeneous observable is the Bochner-
Lebesgue space L (€2, L>°(X,m)), that is, the Kolmogorov quotient (by equality P-almost surely) of
the space of all P-essentially bounded and Bochner measurable maps from Q to L*°(X,m) (and (7) is
interpreted as it holds under the usual identification between an equivalent class and a representative of
the class). However, in the case K = L>(Q, L>°(X,m)), the prior version 3 does not make sense because
one can find an equivalent class [g] € L>(§2, L>°(X,m)) and maps g1, g2 € [g] such that (7) holds for
g = g1 while (7) does not hold for g = gs, see Section 2. On the other hand, the posterior version 4 makes
sense for K = L>®°(Q, L>°(X,m)), and indeed, its relationship with posterior mixing for homogeneous

observables will be discussed in Theorem 2.2.

By the definitions, we immediately see that the prior mixing implies the posterior mixing (that is, (1) =
(2) and (3) = (4) in Definition 1.2). It is also obvious that the prior (posterior) mixing for inhomogeneous
observables in B(2, L>°(X,m)) or C(Q, L>°(X,m)) implies the prior (posterior, respectively) mixing for
homogeneous observables.

We next define exactness for Markov operator cocycles.

Definition 1.5. A Markov operator cocycle (P, o) is called ezact if for P-almost every w € Q and any
f € L{(X,m), it holds that

=0. (10)

RS
im ([P f )

n—oo




As in Remark 1.3, we can easily see that the exactness of a Markov operator cocycle (P, o) is equivalent

to that for P-almost every w € Q and any f € D(X,m),

lim HPOS") F = hyne

n—00

|
e

LY(X)

2 Mixing

The following two theorems tell us relations between our several definitions of mixing when  is a

compact topological space.
Theorem 2.1. Assume that Q is a compact topological space. Then, the followings are equivalent:
1. (P, o) is prior mizing for homogeneous observables.
2. (P, o) is posterior mizing for homogeneous observables.
3. (P, o) is prior mizing for inhomogeneous observables in C(Q, L= (X, m)).
4. (P,o) is posterior mizing for inhomogeneous observables in C(S2, L (X, m)).

Theorem 2.2. If (P,0) is posterior mizing for homogeneous observables, then (P, o) is posterior mizing

for inhomogeneous observables in L>(Q, L= (X, m)).

The following example gives the difference between prior mixing for homogeneous observables and

inhomogeneous observables in B(€2, L= (X, m)).

Example 2.3. Let T': X — X be a measurably bijective map (up to zero m-measure sets) preserving
m such that the Perron-Frobenius operator Ly associated with T is mixing (note that Lrlx = 1x due
to the invariance of m and recall (2)). Note that the baker map is well-known example as such map 7.
Assume that there is a P-positive measure set €y such that the forward orbit of w € € is not finite and
a measurable set (e.g. Q = [0,1] and P is the Lebesgue measure on Q), and that P, = Ly for all w € Q.
By construction, this Markov operator cocycle (P, o) is prior mixing for homogeneous observables, but is

not prior mixing for inhomogeneous observables in B(€), L (X, m)).

We next introduce that our definitions of mixing for Markov operator cocycles naturally lead to the
conventional mixing property for skew-product transformations.

Recall that (X, .4, m) and (Q, F,P) are probability spaces, and o : Q — € is a P-preserving transfor-
mation. We further assume that o is invertible and mizing. Let (P,o) be a Markov operator cocycle
induced by the Perron-Frobenius operator corresponding to a non-singular transformation 7, : X — X
for P-almost every w € Q. Assume that there is an invariant density map h : Q — D(X,m) of (P,0)
and define a measurable family of measures {(}wea by pw(A) = f 4 hwdm for A € A, so that we have
(T) s phor = thow due to (5).

Consider the skew-product transformation © : @ x X — Q x X defined by ©(w,z) = (ow, T,z) with

the measure v on 2 x X,

v(A) = / 1w (Ay)dP(w) for A e F® A,
Q

where A, :={x € X : (w,x) € A} denotes the w-section. Then, (Q x X, F ® A, v) becomes a probability
space, and v is an invariant measure for ©, namely the Perron-Frobenius operator Lg corresponding to

O with respect to v satisfies Loloxx = laxx v-almost everywhere.



Theorem 2.4. If (P, o) is prior mizing for inhomogeneous observables in B(Q, L*° (X,m)), then © is
mizing, that is, for any A,B € F® A,

lim v(©@"ANB) =v(A)v(B). (11)

n—00

Remark 2.5. In the case of prior mixing for homogeneous observables, as in the proof of Theorem 2.4,

we can derive the convergence
l/(@_n(Fl X Al) N (F2 X AQ)) — I/(Fl X Al)I/(FQ X AQ) (n — OO) (12)

for any Fy, Fy € F and Ay, A; € A.

Consequently, every mixing considered in this paper imply the conventional mixing for skew-product
transformations since any measurable set in F ® A is approximated by countable rectangle sets in F X
A. Therefore, we conclude that prior/posterior mixing for (in)homogeneous observables are natural

definitions of mixing for random dynamical systems.

Remark 2.6. When o is an invertible P-preserving mixing transformation, by considering a skew-product
transformation, the conventional definition of mixing for a random dynamical system (7', o) can be derived
from our definitions of mixing as follows. From the definition of mixing for homogeneous observables, for

any Aj, As € A and P-almost every w,
e (Tjj")Al N Ag) oo (Ao (A2) = 0 (n — 00).

On the other hand, from the definition of mixing for inhomogeneous measurable observables, for any
A, B € A® F and P-almost every w,

Hw (TUS_H)AO'"UJ N Bw) — Honw (AU"W),U*W (Bw) — 0 (n — OO)

where A, denotes the w-section of A. One can see that the above two forms of mixing for a random

dynamical systems (7, 0) are equivalent.

3 Exactness

As a characterization of exactness which is well-known for one non-singular transformation (see [1]), we
have the generalization of Lin’s theorem [11] as follows. For each w € Q, P denotes the adjoint operator
of P, defined by

/owgdm:/ fPrgdm
b's b's

for f € LY(X,m) and g € L>°(X,m), and we will use the notation
P(‘gn)* — P: o P;w O+-+0 P:n—lw
forweQand n > 1.

Theorem 3.1. Let (P,o) be a Markov operator cocycle and S = {g € L>(X,m) : ||g|| ~ < 1} the unit
ball in L>=(X,m). Then the following are equivalent for each w € Q.

— 0 as n — oo;

1. f € LY(X,m) satisfies |[PS") f)
f e LY (X, m) satisfies S 1)

2. f € LY(X,m) satisfies [ fgdm =0 for any g € Moot pMg.



Consequently, (P,w) is exact if and only if (>, piM*S = {clx : c € R} for P-almost every w € €.
As an immediate corollary of Theorem 3.1, we have:

Corollary 3.2. If a Markov operator cocycle (P, o) is derived from non-singular transformations T,,,
that is, each P,, is the Perron-Frobenius operator associated to T,,. Then (P,w) is exact if and only if for

P-almost every w € Q,

m (TU(J"))_1 A={0,X} (modm).

n>1

4 Asymptotic periodicity

In the arguments of conventional Markov operators, it is known that mixing and exactness are equiv-
alent properties in the asymptotically periodic class [10]. In this section, we introduce a similar result to
the conventional one for our definitions of mixing and exactness for Markov operator cocycles under the

following definition of asymptotic periodicity, which is studied in [12].

Definition 4.1 (Asymptotic periodicity). A Markov operator cocycle (P,o) is said to be asymptoti-

cally periodic if there exist an integer r, finite collections {\;}/_; C B (Q,(L*(X,m))’) and {p;}_; C

B (Q,D(X,m)) satisfying that {¢%}7_, have mutually disjoint supports for P-almost every w € €, and

there exists a permutation p,, of {1,...,r} such that

ro (r-3xws)| <o ®
=1 L1(x)

Pog? =¢pr;) and  lim

n—oo

for every f € LY(X,m), 1 < i < r and P-almost every w € €, where \¥ = \;(w), ¢¥ = @;(w) and

Y —
Puw = Pon—=1w O 0 Py

Furthermore, if in addition r = 1, then (P, o) is said to be asymptotically stable.

Note that when (P, o) is asymptotically periodic,
1 T
ho =D ¢
i=1

becomes an invariant density for (P, o).
For an asymptotically periodic single Markov operator, exactness and mixing coincide with » = 1 for
the representation of asymptotic periodicity (see Theorem 5.5.2 and 5.5.3 in [10]). The following theorem

leads a Markov operator cocycles version of them.

Theorem 4.2. Let (P,o) be an asymptotically periodic Markov operator cocycle. Then the followings

are equivalent.
1. (P, o) is exact;
2. (P, o) is prior mizing for inhomogeneous observables in B(2, L (X));
3. (P, o) is posterior mizing for inhomogeneous observables in B(Q, L>=°(X));

4. (P,o) is asymptotically stable.
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