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1 Formulations and solutions

Here, for the three inverse problems previously shown by Prof. Saito in his ab-
stract, we present formurations and solutions for those problems using Tikhonov
regularization.

1) Inverse source problem in the Poisson equation([1])
We obtained very and surprisingly simple approximate solutions for the Poisson
equation, for any Lo(R"™) function g,

Au=g on R" (1.1)

in the class of the functions of the s order Sobolev Hilbert space H® on the
whole real space R"(n > 1,5 > 2,5 > n/2).

We shall use the n order Sobolev Hilbert space H™ comprising functions F’
on R™ with the norm (Here, of course, 1 + 79 + - -+ 1, = 1.)
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This Hilbert space admits the reproducing kernel
K(,y) = — / AT (1.3)

2m)™ Jre (L4 [€2)"

as we see easily by using Fourier’s transform.Note that the Sobolev Hilbert
space H® admitting the reproducing kernel (1.3) for n = s can be defined for



any positive number s in term of Fourier integrals Fof F
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for any s > n/2.
Under these conditions our formulations and results are stated as follows:

Theorem 1 Letn > 1,8 > 2 and s > n/2. For any function g € Lo(R™) and
for any A > 0, the best approximate function F;,s,g in the sense

it NP+ g = AFIR gy} = MFL gl + 19 = AFF I

(1.4)
exists uniquely and FY ;  is represented by
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If, for F € H® we consider the solution up(z): Aup(z) = F(x) and we take
ur(§) as g, then we have the favourable result: as A — 0

FY g F, (1.7)
uniformly.

2) The problem in the heat conduction([2]); that is, from some heat u(z, t)
observation at a time ¢, look for the initial heat u(z,0).

We gave simple approximate real inversion formulas for the Gaussian con-
volution (the Weierstrass transform)
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for the functions of the s order Sobolev Hilbert space H® on the whole real
space R™(n > 1, s > n/2). This integral transform which represents the solution
u(zx,t) of the heat equation

up(x,t) = Uge(z,t) on R" x{t >0} (u(z,0)=F(z) on R"). (1.9)

In this problem we can set same norm and reproducing kernel as (1.2) and (1.3).
Under those situations our formulations and results are stated as follows:



Theorem 2 For any function g € La(R™) and for any A > 0, the best approx-
imate function FY in the sense
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exists uniquely and FY ;  is represented by
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If, for F' € H® we consider the output up(z,t) and we take up(&,t) as g, then
we have the favourable result: as A — 0

Flsg— (1.13)
uniformly.

3) Real inversion formulas for the Laplace transform([3])
We obtained a very natural and numerical real inversion formula of the
Laplace transform

€r) ) = 16) = [ T e E@d, p>0 (1.14)

for functions F' of some natural function space. The inversion of the Laplace
transform is, in general, given by a complex form, however, we are interested
in and are requested to obtain its real inversion in many practical problems.
However, the real inversion will be very involved and one might think that its
real inversion will be essentially involved, because we must catch ”analyticity”
from the real or discrete data.

We shall introduce the simple reproducing kernel Hilbert space (RKHS) Hy
comprised of absolutely continuous functions F' on the positive real line R™
with finite norms

{/OOO |F/(t)|2%etdt}l/2 (F(0)=0). (1.15)

This Hilbert space admits the reproducing kernel

min(¢,t")
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0

Then we see that
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that is, the linear operator on Hg ,(LF)(p)p into La(RT,dp) = La(RT) is
bounded([4]). For the reproducing kernel Hilbert spaces Hy satisfying (1.17),
we can find some general spaces.Therefore, from the general theory in [4], we
obtain

Theorem 3 ([4]). For any g € Lo(R™) and for any o > 0, the best approwi-
mation Fy  in the sense

. S|
wf {o [T IFOP T+ IR0 = ol e |
0

FEH
o * 1 *
—a [ IR OP ) D= ol mey (119
exists uniquely and we obtain the representation
FLo®)= [ o(6) (CKal-0) (6 (1.19)
0

Here, K, (-,t) is determined by the functional equation

Kaltt) = 200 - LR o RO mey  (120)
for Ko v = Ko (-,t') and Ky = K(-,t).

We shall look for the approximate inversion Fy  (t) by using (1.19). For this
purpose, we take the Laplace transfrom of (1.20) in ¢ and change the variables
t and ¢’ as in
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Note that
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Therefore, by setting (LK, (+,¢))(§)§ = Hq(€,t), which is needed in (1.19), we
obtain the Fredholm integral equation of the second type
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2 Some examples of numerical experiments

1) Inverse source problem in the Poisson equation([1])

Figure 1: For g(z1,72) = X[—1,11(%1) X X[-1,1](®2) on R?, the figures of
F5 g (21, 29) and AFy, (x1,22) for A = 1072

This numerical result shows that the new method ((1.5),(1.6)) is working
effectively and is useful.

2) The problem in the heat conduction([2])

Figure 2: For g(z1,22) = Xj—11)(x1) X X[—1,1)(#2) on R? the figures of
F;’&g(xl,xg) and up; (g0 fort=1,s=2X= 10722,

The results of this numerical experiment prove the usefulness and correctness
of our method.



3) Real inversion formulas for the Laplace transform([3])
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Figure 3: For F(t) = x(t,[1/2,3/2]), the characteristic function and for o =
1074,1078,1012.
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Figure 4: For F(t) = x(t,[1/2,3/2]), the characteristic function and for a@ =
10—100’ 10—400.

The results of these numerical experiments show that our method is effective
even when there are jumps in the target function, and in Figure 4 we use a high-
precision numerical algorithm developed by our collaborator Professor Fujiwara.
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