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1 Introduction

Let I' € R? be a smooth non-intersecting open arc (crack), and we assume that I' can be extended to an
arbitrary smooth, simply connected, closed curve 0 enclosing a bounded domain € in R2. Let k& > 0 be the
wave number, and let # € S! be incident direction. We consider the following direct scattering problem: For
§ € S! determine u® such that

Au® + E?u® =0 in R2\ T, (1.1)
u® = -0 on I (1.2)

. ou® .\
rlggo \/F( o —iku > =0, (1.3)

where r = |z|, and (1.3) is the Sommerfeld radiation condition. It is well known that there exists a unique
solution u® and it has the following asymptotic behaviour:
eikr ( )
wt(z) = {um(@,9)+o 1/r } r— o0, &= (1.4)
Vr |z]
The function u> is called the far field pattern of u®. With the far field pattern u*°, we define the far field
operator F : L?(S') — L%*(S') by

Fyg(@) = /S u™ (&, 0)g(0)ds(0), @ € S. (1.5)

The inverse scattering problem we consider is to reconstruct the unknown arc I' from the far field pattern
u®(£,0) for all # € S, all & € S! with one k > 0. In other words, given the far field operator F, reconstruct
T.

In order to solve such a problem, we use the monotonicity method. The feature of this method is to
understand the inclusion relation of an unknown target and artificial object by comparing the data operator
with some operator corresponding to an artificial one. For recent developments of the monotonicity method,
we refer to [2, 3, 4]. The following theorems are our main results for solving the inverse crack scattering
problem.

Theorem 1.1 (Theorem 1.1 in [1]). Let o C R? be a smooth non-intersecting open arc. Then,
cCl' <<=  H;H, <, —ReF, (1.6)

where the Herglotz operator H, : L*(S') — L?(o) is given by

H,g(z) = /S eF024(0)ds(6), @ € o, (1.7)

and the inequality on the right-hand side in (1.6) denotes that —ReF — HXH, has only finitely many negative
1
eigenvalues, and the real part of an operator F is self-adjoint operators given by ReF := §(F + F*).



Theorem 1.2 (Theorem 1.2 in [1]). Let B C R? be a bounded open set. Then,
I'cB <~ —ReF <gn H53H8B7 (18)

where Hpp : L*(S') — L?(0B) is given by

Haopg(z) == /S1 k0T g(0)ds(6), = € IB. (1.9)

2  Proof of Theorem
We will only prove Theorem 1.1 because Theorem 1.2 is proved by the same argument. We denote by
H'Y2(T) = {u| . w e H'?(0Q)}
HY2(I) := {ulsue HY2(09), supp(u) c T}
H™Y2(T) = (ﬁlﬂ(r))/
A7) = (H(n))
We have the following inclusion relation:
HY2(I) c HY*(I) ¢ L*(1) c H~Y2(') ¢ H~Y2(1), (2.1)
We denote by the Herglotz operator Hr : L(S') — HY2(I)
ﬁpgzvg|r, (2.2)
We remark that Hp : L2(S?) — H'?(T') has just a different range from Hr : L*(S') — L?*(T'). We denote by
the single layer operator S : H~Y/2(T") — HY?(T")
Sp(o)i= [ pl)(eg)dsty), €T, (2

where ®(z,y) is the Green’s function for Helmholtz equation in R

7
(a,y) = pH  (klr ). = # . (2.4)
Lemma 2.1 (Kirsch and Ritter 2000, [5]). The far field operator F has the following factorization:
F=—H:S 'Hp. (2.5)

Furthermore, S~ is of the form

S~l=C+K, (2.6)

wher K is some compact operator, and C' is some self-adjoint and coercive operator, i.e., there exists co > 0
such that

(.C) > collel? for all . (2.7)
(=) Assume that o C I'. Let R: L?(I') — L?(0) be the restriction operator, i.e., Rf := f|, . Then,

H, = RHy. (2.8)
Let J : HY/?(T') < L?*(T') be a compact embedding map. Then,

Hyr = JHr, (2.9)



which leads to

H, = RJHr. (2.10)
Then,
~ReF — H:H, = Hi[ReS™'— J*R*RJ|Hr
= H}[C+ReK — J*R*RJ|Hr
= Hp[C+ K| Hr, (2.11)

where K is a self-adjoint and compact operator. Let {(N\j,v;)|7 € N} be complete eigensystem of K. Let
V = span{y;|\; < —co}, where a constant number ¢y > 0 appears in Lemma 2.1, and it is finite dimensional.
Then, for all v € VL = span{y;|\; > —co}

(C+K)v,v) >0, (2.12)
which implies that for all g € [ﬁlf(V)]l (< Hrge V')
((—ReF — H3H,)g,9) = ((C + K)Hrg, Hrg) >0, (2.13)
and dim[I:Ifi(V)] < dim(V) < oco. By Corollary 3.3 of [3], we conclude that
H*H, <g, —ReF. (2.14)

(<) Let o ¢ T. We assume on the contrary HXH, <g, —ReF, i.e, by Corollary 3.3 of [3] there exists
a finite dimensional subspace V s.t. for all g € V+

((wReF' — H;H)g,g) > 0. (2.15)
We choose a small open arc og s.t. oo C o and oo NI = (). Then, we have for all g € V+
Hoo9l 220y < IHogla o)
< ((=ReF)g,9)
= ((ReS™")Hrg, Hrg)
< ||Res™| HHI".9||2L2(1")' (2.16)

Lemma 2.2 (Harrach et al. 2019, [3]). Let X, Y, and Z be Hilbert spaces, andlet A: X - Y andB: X — Z
be bounded linear operators, and let V C X be a finite dimensional subspace. Then,

3C >0: ||Az||> < C|Bz|® forallz € V: <  Ran(A*) C Ran(B*)+V, (2.17)

By this lemma, we have

Ran(H},) C Ran(Hy) + V. (2.18)
On the other hand,
Lemma 2.3 (Harrach et al. 2019, [3]). Let X, Y, V C Z be subspaces of a vector space Z. If
XNY={0}, and XCY 4V, (2.19)
then, dim(X) < dim(V).
Lemma 2.4 (Furuya et al. 2020, [1]). (a) dim(Ran(H} )) = oo
(b) Ran(H} )N Ran(Hp) = {0}.

As X = Ran(H;} ), Y = Ran(H}), and V =V, we apply contraposition of Lemma 2.3. We remark that
oo = dim(Ran(H )) £ dim(V) < oo. Then, Ran(H} ) ¢ Ran(H})+V, which contradicts (2.18). Therefore,
we conclude that H*H, %4, —ReF. O



3 Numerical examples

Based on Theorem 1.1, we give numerical examples. The indicator function in our examples is given by
I(0) := # {negative eigenvalues of — ReF — H;H,}. (3.1)

The idea to reconstruct I is to plot the value of I(¢) for many of small ¢ in the sampling region. Then, we
expect from Theorem 1.1 that the value of the function I(o) is low if o is close to T.

Here, o is chosen in two ways; One is the vertical line segment 075" := z; ; + {0} x [—%, %] where
Zij = (%, %) (4,j = =M,—M + 1,..., M) denote the center of 0", and % is the length of 075", and
R > 0 is length of sampling square region [~R, R]?, and M € N is large to take a small segment. The other
is horizontal one o9 := z; ; + [~ 5. 54| x {0}

The far field operator F' is approximated by the matrix

Fx %(u‘x’(il,&m)) € CN*N (3.2)

1<l,m<N
where &; = (cos(2),sin(2£t)) and 6, = (cos(252),sin(352)). The operator HH, is approximated by
HiH, ~ 22 < / ei’w‘“’m—fvl)dy) e CNxN. (3.3)
N o 1<l,m<N

In our examples, we fix R = 1.5, M = 100, N = 20, and wavenumber k = 1, and consider the true shape of
T as a blue curve in Figure 1. Figures 2 and 3 are given by plotting the values of the vertical and horizontal
indicator functions

Loer (i) = I(a}<"), Tnor(2i5) = I(0}9), (3.4)

for each ¢,j = —100,99, ..., 100, respectively.
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Figure 1: true shape of T’ Figure 2: vertical Figure 3: horizontal
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