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1 Introduction

From a representation theoretical point of view, quantum mechanics (resp.
quantum field theory) may be regarded as representations of canonical com-
mutation relations (CCR) and/or canonical anti-commutation relations (CAR)
with finite (resp. infinite) degrees of freedom. Models in quantum mechanics
and quantum field theory are constructed based on Hilbert space representa-
tions of CCR and/or CAR. There exist basically two categories for represen-
tations of CCR and/or CAR respectively, i.e., reducible and irreducible, and
each of them is divided into two classes: equivalent and inequivalent. Quan-
tum theories based on equivalent representations of CCR and/or CAR are
physically equivalent, being different only in the framework of the physical
picture. On the other hand, quantum theories based on inequivalent irre-
ducible representations are essentially different from each other, describing
non-comparable physical situations.

We have learned from studies on models in quantum mechanics and quan-
tum field theory that inequivalent representations of CCR or CAR are associ-
ated with “characteristic” quantum phenomena such as the Aharonov—Bohm
effect [1, 2, 3|, the Bose—Einstein condensation [4, 11, 14] and infrared or ul-
traviolet renormalizations in some models in quantum field theory [8].! This
structure is very interesting and the following philosophical point of view is
suggested:

The Universe uses inequivalent representations of CCR and/or
CAR to create “characteristic” quantum phenomena in which
macroscopic quantities (external magnetic fields, masses, charges,
particle densities etc.) appear as labels indexing families of mu-
tually inequivalent representations of CCR and/or CAR.

'For a comprehensive description of inequivalent representations of CCR and CAR in
correspondence to “characteristic” quantum phenomena, see [10].



From this point of view, it is important to find inequivalent representations
of CCR and CAR respectively as many as possible and to make clear their
physical correspondences.

Complementarily to the contents of the preceding paragraph, we want to
add a remark which should be kept in mind: Roles of equivalent representa-
tions and inequivalent irreducible representations of CCR and/or CAR are
different. Although equivalent representations are physically equivalent to
each other as mentioned above, they may be mathematically important. For
example, there may be mathematical problems which are not so easy to solve
in a representation, but relatively or very easy to solve in other representa-
tions equivalent to the former.? From this point of view, it is important also
to find equivalent representations of CCR and CAR respectively as many as
possible.

As is well known, there is a method, called a Bogoliubov transformation,
which generates a new representation of CCR (resp. CAR) from a given
representation of CCR (resp. CAR). A necessary and sufficient condition
for a Bogoliubov transformation to generate a representation equivalent to a
standard representation, called a Fock representation, has been established
(see, e.g., [17, 20, 21, 22, 23]). It seems, however, that inequivalent rep-
resentations generated by Bogoliubov transformations have not been noted
very much. In fact, there exist physically interesting examples of inequiva-
lent representations; see, e.g., [6] (resp. [7]) in which a family of mutually
inequivalent irreducible representations of CCR (resp. CAR) is constructed
and boson masses (resp. fermion masses) appear as the labels of the family.

A standard Bogoliubov transformation is defined from a pair (7,S) of
everywhere defined bounded linear operators on a one-particle Hilbert space
in a Fock space. It would be natural to ask: what happens if 7" or S is
unbounded? We call a Bogoliubov transformation with 7" or S unbounded
a singular Bogoliubov transformation. Fundamental properties of singular
Bogoliubov transformations have been studied in [9]. In the present paper,
we report some basic results in [9].

2 A typical example to which such a case applies is a one-dimensional quantum harmonic
oscillator. The spectrum of the Hamiltonian is easily found in the Born—-Heisenberg—Jordan
representation of the CCR with one degree of freedom rather than in the Schrédinger one
with the same degree, which is equivalent to the former. In quantum field theory, the Q-
space representation (e.g., [5, 15, 19, 24]), which is equivalent to the Fock representation
of the CCR over a Hilbert space, is very useful.



2 Representations of the CCR over an inner
product space

In this section we review elementary aspects of representations of CCR.
Let .% be a complex Hilbert space and & be a dense subspace of .%. Let
¥ be a complex inner product space with inner product (, ), and norm

[ P

Definition 2.1 Suppose that, for each f € ¥, a densely defined closed linear

operator C'(f) on .7 is given. Then the triple (#, 2,{C(f),C(f)*|f € ¥'})
is called a representation of the CCR over 7 if the following (i)—(iii) hold:

(i) (invariance of 2) For all f € ¥,

7 CD(C(f)NDIC()), CHozca, CUfyr7c.

(ii) (anti-linearity in test vectors) For all f,g € ¥ and «, 5 € C,

Claf+Bg) =a"C(f) +5°Clg)
on 9, where, for z € C, z* denotes the complex conjugate of z.

(ili) (the CCR over ¥) For all f,g € 7,
[C(1),Cl9)T=(fr9)y, [C(),CYI=0 onZ.

Definition 2.2 Two representations (%, 2,{C(f),C(f)*|f € ¥}) and
(F', 2 {C"(f),C"(f)*|f € ¥}) of the CCR over ¥ are said to be equiv-
alent if there exists a unitary operator U : .% — %’ such that, for all f € ¥,

Ue(Hu— =C'(f). (1)
Remark 2.3 Equation (1) implies that UC(f)*U~* = C'(f)*, f € V.

Definition 2.4 Let 2 be a set of (not necessarily bounded) linear operators
on a Hilbert space 2.

(i) The set A is said to be reducible if there is a non-trivial closed sub-
space A of X (i.e., M # {0}, Z) such that every A € 2 is reduced
by # (i.e., PyA C AP ,, where P, is the orthogonal projection onto

3We sometimes omit the subscript # in (, ), and norm | - ||
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(ii) The set A is said to be irreducible if it is not reducible.

Definition 2.5 A representation (F, 2,{C(f),C(f)*|f € ¥'}) of the CCR
over ¥ is said to be reducible (resp. irreducible) if the set {C(f), C(f)*|f €
¥} is reducible (resp. irreducible).

For a Hilbert space Z°, we denote by B(Z") the space of everywhere
defined bounded linear operators on 2.

Definition 2.6 For a set 2 of linear operators on a Hilbert space 2,
A :={T e B(Z)|TAC AT ,VA € A}
is called the strong commutant of 2.
The following fact is well known (see, e.g., [8, Proposition 5.9]):

Lemma 2.7 Let A be a set of linear operators on X .
(i) If A = CI := {al|a € C} (I denotes identity), then A is irreducible.

(ii) If A is an irreducible set of densely defined closed linear operators
on X and x-invariant (i.e., A€ A= A* € A), then A" = CI.

3 Fock representation of CCR

Let S be a complex Hilbert space and denote by ®I'.7 the n-fold symmetric
tensor product Hilbert space of 2. We set ®°# := C. The boson Fock
space over ¢ is defined by

T () 1 = @), Q@ H

- {q, = (U [0 € @l 0> 0,3 U < oo} .

n=0

The subspace
Fo(H) = {V € F,(H)|Fng € N such that ¥ =0,Vn > ny}

is called the finite particle subspace of %, (7). It follows that .%y(7) is
dense in F, ().



For each f € J#, a densely defined closed linear operator A(f) on
F,(H), called the annihilation operator with test vector f € 2, is de-
fined in such a way that the adjoint A(f)* of A(f), the creation operator
with test vector f, is of the form:

D(A(f)") = {\If € F,(H)] Z [vnS,(f @ T2 < OO} :
(A ¥) @ =0,
(A )™ = /nS,(f@U" V), n>1,

where S, denotes the symmetrization operator on the n-fold tensor product
Hilbert space ®".7 of 5. The following proposition is well known (or easy
to show):

Proposition 3.1
(i) Forall f € A, Fo(H) C D(A(f))ND(A(f)*) and A(f) and A(f)*

leave Fo(H) invariant.
(ii) {A(f), A(f)*|f € A} satisfies the CCR over H:
(A, A9) = (f.9) e, [A)Alg]=0 (f.g€ )
on Fo(H).
This proposition shows that, for any subspace 2 of 2,
(7)) = (F(H), Fo () {A]), Af)|f € 2})

is a representation of the CCR over Z. It is called the Fock representation
of the CCR over 2. Concerning irreducibility of mp(Z), we have:

Proposition 3.2 Let 2 be a dense subspace of 7. Then wp(2D) is irre-
ducible.

Proof. See [8, Theorem 5.14]. |

4 Standard Bogoliubov transformations

The main topic of the present paper is a singular Bogoliubov transformation.
But, for comparison, we first review a standard Bogoliubov transformation [8,
17, 20, 21, 22, 23].



Let J be a conjugation on . and suppose that there exist linear operators
T,S € B(H) satistying

T*T —S8*S =1, T*JS=S5*"JT. (2)

Let & be a dense subspace of 7. Then it is easy to see that A(Tf)+A(JSf)*
is a densely defined closable operator. Hence one can define

A(f) = A(Tf) + A(JSf), fe2,

where, for a closable operator C, we denote its closure by C. It is easy to
prove the following lemma:

Lemma 4.1 The triple
T1(2) = (F(H), Fo(H),{A), Af)|f € 7})
is a representation of the CCR over Z.
The correspondence: (A(-), A(-)*) — (A(:), A(-)*) is called a Bogoliubov
transformation, which preserves the CCR over Z.

The following proposition is essentially known:

Proposition 4.2 Assume that 7 is separable and that S is not Hilbert-
Schmidt. Then m3(2) is inequivalent to any direct sum representation of

r(9).
The operators T" and S may satisfy additional conditions:
TT* — JSS*J =1, JST*=TS5"J. (3)
The following theorem is well known.
Theorem 4.3 Assume that € is separable and suppose that (2) and (3)
hold. Then 7 3(2) is equivalent to mp(2) if and only if S is Hilbert-Schmidt.
5 Singular Bogoliubov transformations

In what follows, we present only results. For proofs of them, see [9].



5.1 Definitions

Let T and S be densely defined (not necessarily bounded) linear operators
on ¢ such that there exists a dense subspace 2 C D(T) N D(S) and the
following equations hold:

(Tf,JSg) =(Sf,JTg), [f.9€2, (5)

where J is a conjugation on 7.
For each f € Z, one can define

B(f) = A(Tf) + A(JSf)" (6)

Conditions (4) and (5) imply the following proposition:
Proposition 5.1
m5(2) = (Fu(H), Fo(H ) AB(f), B(f)'|f € Z}) (7)
15 a representation of the CCR over 9.

We call the correspondence T: (A(-), A(-)*) — (B(:), B(-)*) a singular
Bogoliubov transformation if S or 7" is unbounded (then both 7" and S are
unbounded).

Remark 5.2 Suppose that T or S is bounded. Then both T and S are
bounded and o S

TT-SS8=I, TJS=58JT.
Hence, in this case, (4) and (5) are equivalent to (2) with (T',S) replaced by
(T',S) and Tp becomes a standard Bogoliubov transformation.

5.2 Inequivalence to any direct sum representation of
the Fock representation mp(2)

To discuss if m5(2) is inequivalent to mp (%), we first present a general fact:
Lemma 5.3 Let % be a Hilbert space and & be a dense subspace of 7. Let
WC(-@) = (ﬁa 97 {C(f)a C(f)*lf € 9})

be a representation of the CCR over 9. Suppose that mc (D) is equivalent to
a direct sum representation ®_7p(2) of 7p(2) with N < oo or N = o0.
Then there exists a non-zero vector Q@ € NyegD(C(f)) such that C(f)2 =
0, fe.



Remark 5.4 A non-zero vector Q € Ny D(C(f)) such that C(f)Q =
0, f € Z is called a vacuum vector for mc(2).

Lemma 5.5 (absence of vacuum vectors for mg(2)) Assume that F is sep-
arable. Suppose that T is unbounded and T is dense in €. Then there
exist no non-zero vectors Q0 € NreqeD(B(f)) such that B(f)Q =0, f e 2.

Theorem 5.6 Assume that € is separable. Suppose that T is unbounded
and T is dense in F. Then mp(P) is inequivalent to any direct sum
representation of the Fock representation mg(2). In particular, if mp(2) is
irreducible, then mp(2) is inequivalent to mp(2).

5.3 Irreducibility

Assumption (I) There exists a dense subspace %, of ¢ such that the
following (i) and (ii) hold:

(i) v C D(TT*) N D(JSS*J) N D(ST*) N D(JTS*J).
(i) T*9 C 2, (S*))P, C 2 and

Tr* — JSS*J =1, ST*J=JTS" on 2.
Lemma 5.7 Suppose that Assumption (I) holds. Then, for all f € 2,
A(f) =BT f) = B(S*Jf)" on Fo(H). (8)

Theorem 5.8 Suppose in addition to (4) and (5) that Assumption (1) holds.
Then wg(2D) is irreducible.

The subset
Hy={feA|If=[}

becomes a real Hilbert space and each f € J¢ is uniquely written as
f=h+if

with fl, fg € %]
Another criterion for the irreducibility of m5(2) is given as follows:

Theorem 5.9 Suppose in addition to (4) and (5) that
JScSJ, JrctTJ.

Let 5 := 2N, R:= (14+40)T+ (1 —1)S and suppose that RZ; is dense
in . Then tp(2D) is irreducible.



6 A general class of singular Bogoliubov trans-
formations

Let K and L be injective (not necessarily bounded) symmetric operators on
a Hilbert space .7 such that

Dyr, = DK 'LYND(KL™) (9)
is dense in 57 and, for a conjugation J on JZ,
JK CKJ, JLCLJ. (10)

Then one can define densely defined linear operators

1
T, = §(K—lLiKL—l) (11)

with D(Ty) = Pk 1. 1t follows from (10) that
JTy C T4 J.
Lemma 6.1 For dll f,g € Pk 1,

(Tyf, Tyg) —(T_f,T-g) = (f,9), (12)
(T4 f, JT_g) = (T-f, JT%g) . (13)

Let 2 be a dense subspace of ¢ such that 2 C Yk . Then one can
define a densely defined closed linear operator

Bi.u(f) = AT ) + AUT_f), fe9. (14)
Proposition 6.2

T, (D) = (Fu(H), Fo(H),{Br,.(f), Br,.(f)'|f € Z})n (15)
is a representation of the CCR over 9.

If Ty or T_ is unbounded, then the correspondence: (A(:), A(-)*) —
(Br..(+), Bi,(-)*) is a singular Bogoliubov transformation.

A simple application of Lemma 5.5 and Theorem 5.6 yields the following
theorem:

Theorem 6.3 Let ¢ be separable. Suppose that T, is unbounded and T'y 9
1s dense. Then:



(1) There exists no non-zero vector Q € NseyD(Br (f)) such that
BK,L(f)Q = 07 f €9.

(i) The representation w () is inequivalent to any direct sum repre-
sentation of the Fock representation mp(2). In particular, if 7x (D)
is irreducible, then wg () is inequivalent to mp(2).

With regard to irreducibility of 7k ,(Z2), we have the following result.

Theorem 6.4 Suppose that (K~ 'L+iKL™')(2N5) is dense in A . Then
7k.0(2) is irreducible.

Proof. We need only to apply Theorem 5.9 to the case where T' = T/,
S =T_. In this case R = K 'L+ KL |

Example 6.5 An example of singular Bogoliubov transformations in the
form 7 (2) is associated with the Casimir effect [12, 16, 18, 25] in the
context of a quantum scalar field. See [8] for mathematical details. A singular
Bogoliubov transformation appears also in a quantum scalar field theory [6].
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