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Abstract

We report our results on the scaling limit of the eigenvalues and the
corresponding eigenfunctions for the 1-d random Schrédinger operator
with random decaying potential. The formulation of the problem is
based on the paper by Rifkind-Virag [9].

1 Introduction

In this note we consider the following one-dimensional Schrédinger operator
with random decaying potential :

2

d
H =~ +a(t)F(X))
where a € C*°(R), a(—t) = a(t), a(t) is monotone decreasing for ¢ > 0 and
a(t) =t"*(1+o0(1)), t— o0

for some a > 0. F' € C*°(M) is a smooth function on a torus M such that

(F) = /M Fa)dz =0
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and {X;}ier is the Brownian motion on M. Since a(t)F(X;) is a compact
perturbation with respect to (—A), the spectrum o(H) N (—o0,0) on the
negative real axis is discrete. The spectrum o(H) N [0,00) on the positive
real axis is [4] :

a.c. (>1/2)
o(H)NJ0,00) is p.p. on [0, E.] and s.c. on [E.,00) (a=1/2)
p-p- (v < 1/2)

where E. is a deterministic constant. For the level statistics problem,
we Consider the point process &1, g, composed of the rescaling eigenvalues
{L(y/E —VEp) )}; of the finite box Dirichlet Hamiltonian Hy, := Hljo,1
whose behav10r as L — oo is given by [3, 6, §]

Clock(6(Ey)) (a>1/2)

Sy > Sine(B(Ey))  (a=1/2)
Poisson(d\/m) (o < 1/2)

where Clock(0) := Y, .z Onrts, is the clock process for some random variable
6 on [0, 7), and Sine([3) is the Sineg-process which is the bulk scaling limit of
the Gaussian beta emsemble [10]. For o = 1/2, 3(Ey) = 7(Ep) ™! is equal to
the reciprocal of the Lyapunov exponent 7(FEjy) such that the solution to the
Schrédinger equation Hy = E¢ has the power-law decay : o(x) ~ |z|~7(F)

|z] — oco. Since limg, o 5(Ey) = 0 and limpg,10 B(Ep) = 00, small (resp.
large) Ey corresponds to small (resp. large) repulsion of eigenvalues, which
is consistent to the following fact [1, 7] :

: d [ Poisson(d\/m) (810)
Sine(f) = { Clock(unif[0,m)) (81 o0)

In this note, we consider the scaling limit of the measure corresponding to
the eigenfunction of H, under the formulation studied by Rifkind-Virag [9].
To formulate the problem, we need some notations. Let {E;(L)}; be the
positive eigenvalues of Hy, and {@D } be the corresponding eigenfunctions.

We consider the associated random probablhty measure ,u%j)( 1) on 0, 1].

2
) "

1 d
iy () = (wgiim@wﬁ B '—wéi%m@ﬂ

dt
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Let J := [a,b](C (0,00)) be an interval, 5§L) = {E;(L)}; NJ be the eigen-
values of Hy, on J, and ESL) be the uniform distribution on EgL). Our aim is
to consider the large L limit of the eigenvalue-eigenvector pairs :
L) (L d
Q: <E§ ),M;()L)) -7
J

For d-dimensional discrete random Schrodinger operator, if J is in the local-
ized region, we have [2, 5]

L L d
(ES )a/i;()m) - (EJu(Sunif[O,l}d)
J

where E; is the random variable obeying 1]\%%) dN(E), where dN is the den-
sity of states measure. Rifkind-Virag studied the 1-d discrete Schrodinger
operator with critical decaying coupling constant, and obtained that the

limit of ug&) is given by an exponential Brownian motion [9] :
J

exXp <2ZT(EJ)(t—U) - 2T(EJ) |t - U|>dt

J>
fol exp <QZT(EJ)(S_U) —27(Ey)|s — Ul)dS

(L) (L) d
<EJ 7MEJ(L)> — | &

To state our result, we need notations further. Let N(E) := 7~'v/E be the
integrated density of states, N(J) := N(b) — N(a), and

7(E) = 8LE/M V(L + 2iVE) ™ F|*da.

where L is the generator of (X;). Moreover, let E; be the random variable
whose distribution is equal to N(J) '1;(E)dN(FE), let U be the uniform
distribution on [0, 1], and let Z be the 2-sided Brownian motion, where F;,
U, and Z are independent.

Theorem 1.1
(L) (L)
<EJ ’MEJ'(L)>
(Ey, 1oy (t)dt) (a>1/2)
exp| 2Z_ oe £ —27(EJ) log + )dt
i} EJ, (Ej)log ¢7 | Ul (a _ 1/2)
fol exp QZT(EJ)IOg_ﬁ—2’T(EJ)|10g%|>d$
(E, dunifio.(dl)) (v < 1/2)



When a < 1/2, this result is the same as that in [2, 5], while for a > 1/2
ths result is natural. For o = 1/2; this result implies that, the localization
center U of the eigenfunction 1 is uniformly distributed and ¢ has the power
law decay around U with Brownian fluctuation. Since limg o 7(F) = oo and
limp 7(E) = 0, ¢ is localized (resp. delocalized) for E | 0 (resp. E T 00)
which is consistent with the previous picture.

2 Sketch of Proof

For the proof, we mostly follow the strategy in [2, 5, 9], except for some
technical points.

2.1 Step 1 : renormalize the radial coordinate

In what follows, we describe the solution z; to the equation Hx; = k%, in
terms of the Prifer variales :

(2 ) =n (0600

Introducing p;(k) defined by r(k) := exp(pi(x)), we have

1 s
p(K) = ﬁj’m %) (s)F(X,)ds
0

Let Kx = Ko + %7 Ko = VE0> ﬁf&n)("{) = pnt("{) - <Fgm> fona(s)sta gk =
(L +2ik)™'F, t € ]0,1]. We then have

Lemma 2.1 If a =1/2, then

2 (ky) S 3i(N),  t€0,1], locally uniformly
2
0

2
d,agm(m):“f)dw T(f())ng, t>0

where {B}} is a family of Brownian motion.



2.2 Step 2 : limit of the local version

Let =™ be the local version of our problem :

==Y
Z < V Ej(n) \/_) P«(En)(n)>

It then follows that

—(n) 4 —
Lemma 2.2 2™ 5 = where

ez Ojmto @ 01y (t)at (a>1/2)
= _ exp(2p¢(N))dt .
E=1¢ Do Sineg Hh® 5(—1—f exp(2p5()\))ds> (a=1/2)

Zj625j®5Pj7 (a < 1/2)

where {P;} : Poisson(d\/T), {]3]} : Poisson(1jq)(t)dt). The intensity mea-
sure of = 1s given by

E[G(\ v)d=(\, v)]

JdXE [G (X, 1jo.y(t)dt)] (a>1/2)
exp| 2Z_ s t —27(Eo) log dt
:% JE |G [N —— = - |U|> (@ =1/2)
Jo exp ZZT(EO)IOg%_QT(EO log|ﬁ|)ds
JANE[G (A, év)] (a>1/2)

where U := uni f[0, 1].

2.3 Step 3 : averaging over the reference energy

Following [9], we introduce

g(x) == (1 — lzD1(z] < 1)

GL(E) = <<\/7 \/E_o)> » (BA(L). it

( )eJ

AN (E) |
N(J) E[GL(E)] by the following

two ways, and then equate them by the Fubini theorem, which leads to the

where g € C,(RxP(0,1)). We compute [




conclusion.

(1) Since [ &7 J) Lg, = 1/(Lx), we have

- [ IN(E) ., : E)}

N(J)
- N(lJ E%@g?( L): iy >)]
=B [ﬁ{ eigenvalues of thL on J }(1+ of % E](XL:EJQQ < NE (L)>]
(2)
W ECLE)
- [ | 5 o (VB VE) ) (i h))]
~ [E | [ 8l 0= )
— [ S e [ e iz ]

[ dAE [go (E, 1j0.1y(t)dt)] (a>1/2)

dN(E) 1 exp|2Z_ oe s —27(Fp) log| & )dt
™ fol exp <QZT(E0)108U T(E0)10g|ﬁ|>ds

JAXE g2 (E, 0v)] (a>1/2)
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