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EQUATIONS ARISING IN HYPERBOLIC QUADRATIC
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ABSTRACT. We consider Bernoulli’s method for solving quadratic matrix equa-
tions (QMEs) having form Q(X) = AX? + BX + C = 0 arising in hyper-
bolic quadratic eigenvalue problems (QEPs) and quasi-birth-death problems
(QBDs) where A, B,C € R™*™ satisfy Esenfeld’s condition [8]. First, we an-
alyze the exsistence of a solution and the convergence of the methods. Second,
we sharpen bounds of the rates of convergence. Finally, in numerical experi-
mentations, we show that the modified bounds give appropriate estimations of

the numbers of iterations.

1. INTRODUCTION

In this paper, we consider the quadratic matriz equation (QME)
(1.1) Q(X):=AX*+BX +C =0,

where A, B, C € R"™*™ satisfy Esenfeld’s condition

(1.2) 4|B7MAlIB7Cl <1

[8,39]. If S € R™*™ gatisfies Q(S) = 0 in (1.1) then we call that S is a solvent [6].
Note that in [8] Esenfeld assumed that all coefficient matrices are nonsingular, but

our condition needs that only B is nonsingular.

From Bernoulli’s iteration [7,13,21], we construct the functional iterative methods

Xo=0

(1.3) k=0,1,2,...
X1 = F1(Xy) = —-B~! (AX]% + C) ,

and
Xo=0

(1.4) k=0,1,2,....

Xk.;,.l = f2(Xk) = — (B + AXk)_l C7
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Higham and Kim [21] showed that the iteration (1.4) converges to minmal solvents
of the QMEs (1.1) if they have such solvents. Bai and Gao [3] modified the iteration
by techniques of the Gauss-Seidal iteration. In stochastic areas, it is well-known
that the iterations (1.3) and (1.4) converge to elementwise minimal nonnegative
solvents of QMEs (1.1) arising in QBDs (for more details, see Favati and Meini [11].).
Definitions of minimal and elementwise minimal nonnegative solvents are found

in [21] and [36] respectively.

Those implies that the convergence of the iterations (1.3) and (1.4) are depend on
the existence of such extreme solvents. There are well-known two conditions guar-
anteeing the existence of such extreme sovlents. One is from quadratic eigenvalue
problems (QEPs) and the other is from quasi-birth-death processes (QBDs).

Let coefficient matrices A, B and C' are Hermitian positive definite. Then QEPs
satisfying
(1.5) Hnﬁin ((I*BI)2 — 4 (z*Ax) (3:*093)) >0,

x||=1
are called hyperbolic [26,37], and (1.5) guarantees the exisitence of minimal solvents
of QMEs (1.1). Those problems have been widely studied together with elliptic
problems [18, 23,24, 34, 37]. Besides, let A, C, I + B := N be real and have no
negative entries. Then QMEs satisfying

(1.6) -Bl,,=(A+C)1, and A+ N +C isirreducible

have elementwise minimal nonnegative solvents and transition matrices from the
associated QBDs have the unique stationary vectors where 1,, is the m-column vec-
tor of which entries are 1. Those solvents of QMEs (1.1) play key roles in stochastic
areas [5,9,17,27].

On the other hand, the existence of solvents of QMEs (1.1) in view point of func-
tional analysis on Banach spaces were also discussed by some authors [2,8,21,25,30].
From the results, we found that Esenfeld’s condition (1.2) is much involved in not
only the existence of solvents but also the semi-local convergence of functional it-
erative methods for special strarting matrices (note the relation to the condition
that the discriminant of a scalar quadratic be positive [21]). Moreover, many exam-
ples and applications of QMEs arising in hyperbolic QEPs including over-damped
mass-spring systems referred in [3,12,16,18,21,22,24,32, 34,37-39] and stochastic
problems including QBDs referred in [1,4,5,9-11, 14, 15,17, 19-21, 27-29, 31, 35]
satisfy (1.2) as well as (1.5) and (1.6) respectively.

2. RELATED DEFINITIONS AND THEOREMS

For S € R™*™ and ¢ > 0, B(S,d) denotes an open ball centered by S with a radius
0 such as
B(S,0) :={X eR™™ : | X - 5| <6},
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and the spectral radius of A € R™*"™ is defined by

p(A) := max{|A| : det(A — AI) = 0}.

Since F; in (1.3) is well-defined on R™*™ from the properties of matrix norms we

have

(2.1) 1F(Y) = Fu(X)] < (1B~ AY (| + | BT AJIX]) Y — X].
Define

(2.2) [1(X,Y):=||BT'AY | + | B A X].

Since F3 in (1.4) has the matrix inverse operations, we need the following lemmas.

Lemma 2.1 (Neumann Lemma, see [33, 2.3.1]). For A, B € C™ ™, if A be

nonsingular and p(A='B) < 1, then A — B is also nonsingular and represented by

(2.3) (A-B) '=A"1'4+A4'B(A-B)".

|A™'B|| < 1 instead of p (A~'B) < 1 also leads to the same conclusion in Lemma
2.1.

Lemma 2.2. (See [33, 2.3.1].) For L,M,N € C™* ™, if L is nonsingular and
|L=M]|| < 1 then L — M is also nonsingular and

LN
L-M)"'N| < LN
I ) = 1—||[L-tM]||

For X € R™*™ if F5(X) in (1.4) is well-defined, then from the Neumann lemma
for a sufficiently small perturbation matrix H € R™*™ we have
Fo(X+H) = ((B-AX)-AH) 'C
= (B—AX)'C+ (B—-AX) "AH((B — AX) — AH)"'C
= FR(X)+(B-AX)'AH(B - AX — AH)"'C.
From the above expression H :=Y — X yields

FolY) — Fo(X) = (B - AX)'A(Y - X)(B-Y) 'C

and
[F2(Y) - F(X)| = [(B-—AX)""A(Y - X)(B-AY)" ' C|
< [(B=AX)A|(B-AY) T C|l Y - X||.
Define
(2.4) Ty(X,Y) = (B—AX) " AJl|| (B - AY) " C|.

We show that the iterations (1.3) and (1.4) always converge to a solvent of which

the existence is guaranteed. The followings are used in the analysis.
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One-step stationary iterations have the form
(2.5) X1 =F(Xg), k=0,1,2,...,

where F' : D C R™*™ — R™>™_ This include Newton’s method and some of

minimization methods.

Theorem 2.3 (Contraction Mapping Theorem, see [33, Thm. 12. 1. 2]). Let F :
D C R™*X™ — R™X™  and suppose that F' maps a closed set Dy C D into itself
and that

IF(X) - FY)[ <allX =Y|, VX,Y Do

for some a < 1. Then, for any Xo € Dy, the sequence {X} generated by (2.5)
converges to the unique fixed point S of F in Dy and

(e
1%k = 51 < 7= 1 Xk = Xl k=1,2,....

Definition 2.4. (See [33, Def. 12.3.1].) The matrix function F' : D C R™*™ —

R™>™ ig an iterated contraction on the set Dy C D if there is an o < 1 such that
I1F (F(X)) - F(X)|| < allF(X) - X|
whenever X and F(X) are in Dy.

Theorem 2.5. (See [33, Thm. 12.3.2].) Suppose that F : D C R™>*™ — R™*X™ g
an iterated contraction on the closed set Dy C D and that for some Xy € Dg the
sequence

Xpt1=F(X), k=0,1,2,...,

remains in Dg. Then, limy_, o Xy := S € Dg, and the estimation
«a
(2.6) HX]C—S” Sm”Xk_Xk—lHa k=1,2,...

holds. Moreover, if F is continuous at S, then S = F(S).

3. ANALYSIS OF THE EXSISTENCE AND THE CONVERGENCE

3.1. Local Convergence of X, = F1(X) for Xy = 0. We show that F; in

(1.3) is invariant and iterated contractive on some closed balls.
Lemma 3.1. Suppose that B is nonsingular,
|IB7'A| <a and |B7'C||<b
where a and b are positive constants. If
v:=4ab <1

then Fi in (1.3) is invariant and iterated contractive on B := B (0,1/2a).

Proof. Let X € B. Then from

1 1
b= d||X|| < —
and || X|| < 50

Y
—_— < R—
4a 4a
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we have

1 2
IRE)| < ||B-1AX2||+bSa(2—a) i

1 1
+7<_

3.1
(3.1) 4a 2a

Therefore F; is invariant on B.

From (3.1) we get

Iy (F(F(X)), Fu(X)) | B~ AF(X)|| + a|| X
147 1 3+79
S 0Ty Ty T T <

where I'y is in (2.2). From (3.2) we obtain

(3.2) 1

3+

(3.3) [F1 (F1(X)) = F(X)] < TH]:l(X)—XH-

O
Since F is Fréchet differentiable and iterated contractive on B (0, 1/2a), from The-
orem 2.5 the next theorem follows.
Theorem 3.2. Under the assumption of Lemma 3.1, if
v:=4ab <1

then the sequence { Xy} generated by (1.3) has a limit S in B. Moreover S is a
solvent of QME (1.1) and the estimation

3+
X = 81 < T 1K~ Xl k=12,

holds.

Proof. From (3.3) in Lemma 3.3 the estimation is given by

o _ 34y
1—a_1—3—r1_1—fy'

0

3.2. Local Convergence of X1 = F5(Xj) for Xy = 0. We show that F» in

(1.4) is invariant and contractive on some closed balls.

Lemma 3.3. Under the assumption of Lemma 3.1, If
v:=4dab < 1
then Fp in (1.4) is invariant and contractive on B := B(0,8) where

(3.4) d:= vl

2a°
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Proof. Since
(3.5) V7 =2Vab < 1,
we have

1>1—+Vab>Vab>0

Let X € B. Then from
|m“§ﬁi:£@
2a a
we get

IBTIAX| <] X|| < 1.

Therefore from Lemma 2.2, B — AX is nonsingular and

|7x) < [jB-ax0)"c|

b < b
T o 1-alX| C1-Vab
(36) < L:@:ﬂ
Vab a 2a

From (3.6), F is invariant on B.

Let Y, Z € B. Then from Lemma 2.2 and (3.6) we get

Iy (Y,Z) = [(B-AY) "All[(B—-AZ) 'C|
a b
L—alY]] 1-a|Z|
< a b
~ 1—+Vab 1—+ab
b
(3.7) < = 1

=TS

where I's is in (2.4). From (3.7) we obtain
g

e

(3.8) [F2(Y) = Fa(2)|| < Y —Z|.

O

Since JF» is Fréchet differentiable and iterated contractive on B(0,6), from the

contraction mapping theorem we have the next theorem.

Theorem 3.4. Under the assumption of Lemma 3.1, if
v:=4ab <1

then the sequence { X1} generated by (1.4) has a limit S in B. Moreover S is the
unique solvent of QME (1.1) in B and the estimation is given by

i
HXk—S” < m

where 6 and v are in (3.4) and (3.5) in Lemma 3.3 respectively.

||Xk_Xk—l||7 k:1,2,
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Proof. From (3.3) in Lemma 3.3 the estimation is given by

N
o (=) gl 7
l-a 1-—2— (©2-/)2 -7 4—-4/7
a =) 2-v7)?*—~ Val

4. SHARPENING BOUNDS OF THE RATES OF CONVERGENCE

4.1. The Rate of Convergence of X, = F1(X}) for Xy =0.

Theorem 4.1. Let A, B,C € R™*™ and supoose that B is nonsingular and
0 <v:=4|B7'A||B~'C| < 1.

Then, for the sequence {Xy} generated by (1.3), we have

[ Xk+1 — Xkl
T TRl <l 1—y, k=1,2,....
X6 — X ]~ 7

Proof. Since

— Y
X, |l =B || < ——

we get

4.1 Xpsall < 1B X5)? + ——=L—, VkeN.
(4.1) [ Xerall < I Xk +4||B—1A||’ =

Since the sequence of the right side of (4.1) is increasing and bounded above by

1/2a, we have

1—+y/1—7v

From (4.2), we obtain for all k € N

Vk € N.

1 Xr+1 — Xell < Ti(Xe, Xe— )| X — Xi—1]|
< |BTTA| (1 Xkl + 1 Xk—ll) 1 X5k — Xl
_ 1—-+v1—7v
< 1Al (St ) 1 il
[ B~LA]
<

(1= VI=7) 1%k = Xiall.

From Theorem 2.5 we have the next corollary.

Corollary 4.2. Let A, B,C € R™*™ and supoose that B is nonsingular and

0<v:=4|BA|||B'C| < 1.
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Then,, the sequence { X1} generated by (1.3) has a limit S in B. Moreover S is a
solvent of QME (1.1) and estimation

1—+/1—
1Xp — S| < — YT X - X, k=0,1,2,...
T
holds.

4.2. The Rate of Convergence of X1 = F(X}) for Xy = 0.

Theorem 4.3. Let A, B,C € R™*™ and supoose that B is nonsingular and
0 <v:=4|B'A||B~'C| < 1.

Then, for the sequence { Xy} generated by (1.4), we have

| X1 — Xkl < 1-y1—7v

, k=1,2,....
[Xp = Xg—al] — 1+V/T—7
Proof. Since
— gi

Xi|=|B7C| < ————

we obtain
- v
(43) Xl =B - Ax0) 7 0| < . . VkeN.
* 4(1— || BT AJl[[Xk|)

By the mathematical induction, we easily prove that the sequence of the right side

of the inequality (4.3) is increasing and bounded above by v7/2|B *4||. So we have

1—T—v
||Xk||§f7 k:071725'-~-
2| BA]
From Lemma 2.2 and
- | B~ Al[| F2(X)]|
I (F(X), X) = || (B = A%(0) " 4| |1 ()| < -2 ,
L — | B=LA[[[|F2(X) |l
we get
[Xer1 — Xl = [F2(Xk) — Fo(Xk-1)]
< Ty (Fo(Xp), Xi) | Xp — Xp—1 ||
| B~ AJll| X
< - | X5 — X1l
L — | B7LA[|[| X
= 1V
SR = T
where I's is in (2.4). O

From Theorem 2.3 we have the next corollary.

Corollary 4.4. Let A, B,C € R™*™ and supoose that B is nonsingular and

0<v:=4|BA|||B'C| < 1.



Local Convergence of Iteration Methods for Solving QME 9

Then, the sequence {X} generated by (1.3) has the unique solvent solvent S in B

and estimation

1—4/1-—
X, — Sl € ==X} — Xpaf, k=0,1,2,...

21 —7v

Y
< ——m-—.
191= 51514

holds and

In Corollary 4.4, since S is the unique solvent on neighborhood of the zero matrix,
S must be the minimal solvent in view point of matrix norms and the spectral
radius (i.e. p(S) < p(S’) and ||S|| < ||97|| if S’ is arbitrary solvent of QME (1.1)).

Therefore we have the following theorem.
Theorem 4.5. Let A, B,C € R™*™ and supoose that B is nonsingular and
0 <~ :=4|B'4|||B~'C| < 1.

Then, QME (1.1) has the minimal solvents S on B (0, ‘2/—5) in view point of spectral

radius. Furthermore, if S is nonsingular and

(4.4) 1<+/1—vy+2|BtA|,

then the inverse of S is a solvent of Q2(X) = CX?%+ BX + A satisfying |Amin(S)| >
1.

In Theroem 4.4, since 1 < /T — v+2||B~1C|| implies that there exists the minimal
solvent of Q2(X) = 0 in view point of the spectral radius such that p(S) < ||S]| < 1,
if S is nonsingular then S~1 is also a solvent of Q(X) = AX?+BX+C = 0 such that
[Amin (S™1)| > 1. That is S~! could be dominant solvent of Q(X) = 0 (see [21, 37

for more details of minimal and dominant solvents.).
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