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ABSTRACT. In 2008, Luc initiated the study of variational relations, which is a
unifying approach to various models of equilibrium theory and variational inclu-
sions. In 2018, we generalized some of Luc’s results by reflecting recent devel-
opment of the KKM theory on abstract convex spaces. Moreover in 2019, we
obtain some abstract space versions of known results on generalized KKM maps
and variational relation problems appeared in the papers of Park and Lee; Balaj
and Luc; Luc, Sarabi and Soubeyran; Lin; and Balaj, in the chronological order.
In this talk, we introduce some contents of our papers in 2018 and 2019.

1. INTRODUCTION

In 2008, Luc [5] initiated the study of variational relations, which is a unifying
approach to various models of equilibrium theory and variational inclusions. There,
a simple condition was established for the existence of solutions of variational rela-
tions and was applied to a number of variational problems. In 2018 [13], some of
Luc’s results are generalized by reflecting recent development of the KKM theory
on abstract convex spaces.

Moreover in 2019 [14], we obtain some abstract space versions of known results
on generalized KKM maps and variational relation problems appeared in the papers
of Park and Lee [15], Balaj and Luc [2], Luc, Sarabi and Soubeyran [6], Lin [4], and
Balaj [1], in the chronological order.

In this talk, we introduce some contents of [13] and [14].

The definitions, some basic facts, and some of typical examples of abstract convex
spaces are shown in our previous talks at RIMS or [13] and [14].

In Sections 2-4, we follow the pioneering work of Luc [5] and show that some of
his results can be extended to our abstract convex spaces. In fact, Section 2 deals
with Luc’s condition linking the existence of solutions to the variational relation
problem (VR) and the intersection property of a certain multimap. Sections 3 and
4 are concerned with sufficient conditions for existence of solutions of a broad class
of models, respectively, in which conditions based on intersection theorems and fixed
point theorems are derived.

Section 5 deals with Luc, Sarabi and Soubeyran [6] on the existence of solutions
in variational relation problems without convexity. Finally, Section 6 concerns with
a generalization of a basic result of Balaj [1] on three types of variational relation
problems.
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Let (D) denote the class of nonempty finite subsets of a nonempty set D.

2. VARIATIONAL RELATION PROBLEM

According to Luc [5], we assume: A, B, and Y are nonempty sets, S : A —o
A, S9: A—oBand T: AXx B — Y are multimaps with nonempty values. Let
R(a,b,y) be a relation linking a € A, b € B and y € Y. We consider the following
problem, denoted (VR):

Find @ € A such that:

(1) @ is a fixed point of S1, that is @ € S;(a);
(2) R(a,b,y) holds for every b € Sy(a) and y € T'(a,b).

This problem is called a wvariational relation problem in which the multimaps
S1, So, T are constraints and R is a variational relation. The relation R is often
determined by equalities and inequalities of real functions or by inclusions and
intersections of set-valued maps. Typical instances of variational relation problems
are the following as shown by Luc [5]:

(i) Optimization Problem
(ii) Equilibrium Problem
(iii) Variational Inclusion Problem
(iv) Differential Inclusion

To study the variational relation problem (VR), Luc [5] defined a multimap P :
B — A by

P(b) = [A\ S5 (b)Ju{a € A:a € Si(a), R(a,b,y) holds Vy € T'(a,b)}.

The following main theorem of [5] expresses the existence of solutions of (VR) by
an intersection relation:

Theorem 2.1. ([5]) A point a € A is a solution of the variational relation problem
(VR) if and only if it belongs to the set (),cg P(b).

The following corollary is useful in establishing sufficient conditions for the exis-
tence of solutions via fixed point theorems.

Corollary 2.2. ([5]) A point a € A is a solution of (VR) if and only if the set
B\ P~ (a) is empty. In particular, if A = B, then (VR) has a solution under the
following conditions:

(i) The map a— A\ P~ (a), a € A, has a fized point whenever it has nonempty
values.

(ii) For each a € A, Sa(a) C Si(a).

(iii) For each fized point a of Sy, the relation R(a,a,y) holds for ally € T(a,a).

3. CRITERIA BASED ON INTERSECTIONS

In this section, we derive two sufficient conditions for the existence of solutions
of (VR) as in Section 3 of Luc [5]:

Definition 3.1. ([5]) We say that the problem (VR) is finitely solvable if, for every
finite subset N € (B), there is some ay € A such that, for each b € N, either
b ¢ Sa(ap) or ag € Si(ap) and R(ao,b,y) holds for all y € T'(aop, b).
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Proposition 3.2. ([5]) Assume that A is a compact set. Then, the variational
relation problem (VR) has a solution if and only if it is finitely solvable.

From now on, we assume that A = B, a nonempty subset of a partial KKM space
(X;T), and that (Y;A) is another partial KKM space.

Definition 3.3. ([5]) We say that the relation R is T-KKM (or KKM for short)
if, for every finite subset N = {a1,...,ax} of A and for every a € I'y, one can find
some index 7 such that R(a,a;,y) holds for all y € T'(a,a;).

This definition is an adaptation of the KKM maps to variational relations. We
recall that a multimap G : A — A is said to be KKM if for every finite subset
N ={aq,...,ax} of A, we have 'y C G(N) = Ule G(a;).

The following intersection theorem of the KKM-Fan type for our abstract convex
space theory will be needed: If A is a nonempty compact and I'-convex subset of a
partial KKM space and if G : A — A is a KKM map with nonempty closed values,

then (,c4 G(a) # 0.

Theorem 3.4. The following conditions are sufficient for (VR) to have a solution:
(i) (A;T) is a compact partial KKM space.
(ii) The map P has closed values.
(iii) For every a € A, the T'-convex hull of So(a) is contained in Si(a).
(iv) The relation R is KKM.

Proof. Consider the map P on A. We start with proving that for each a € A, the
set P(a) is nonempty. Indeed, if not, say P(ag) is empty for some ag € A. By the
definition of P, every Sa(a) contains ag. In particular, ag € S2(ag) C Si(ag). Since
R is KKM, we deduce ag € P(ap), a contradiction. We show next that P is KKM.
To this purpose, let N = {ai,...,ar} € (A) and let a € I'y. If a belongs to the set
A\ S5 (a;) for some i, then we are done because a belongs to P(a;) as well. If not, in
view of (iii), a belongs to the corSz(a), and hence a € Si(a). As R is KKM, there is
some index ¢ such that R(a,a;,y) holds for all y € T'(a, a;). This implies a € P(a;),
and P is KKM. It remains to apply our KKM-Fan theorem [7] and Theorem 2.1 to
conclude. U

When A is a nonempty convex compact subset of a (not necessarily Hausdorff)
topological vector spaces, Theorem 3.4 reduces to Luc [5, Theorem 3.1].

In order to develop sufficient conditions for (ii) and (iv), it is recalled some
definitions of continuity of multimaps. Let G be a multimap between two topological
spaces X and Z. It is closed (resp. open) if its graph is a closed (resp. open) set in
X x Z; it is upper semicontinuous if for x € X and an open set V C Z containing
G(z), there is some open neighborhood U C X of z such that G(U) C V; and it is
lower semicontinuous if for x € X and an open set V C Z with VN G(x) # 0, there
is some open neighborhood U C X of = such that G(2’) NV # () when 2’ € U.

Definition 3.5. Let b € A be given. We say that the relation R(.,b,.) is closed
in the first and the third variables if, for every net {(aq,ys)} converging to some
(a,y), and if R(aq,b,ys) holds for all a, the relation R(a,b,y) holds too.
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We set
Z:={acA:acSi(a)},
Pr(b) :={x € A: R(x,b,y) holds for all y € T'(z,b)}.

It is clear that P(b) is the union of the sets A\ Sy '(b) and Z N Pg(b). Therefore,
P(b) is closed if these two latter sets are closed. Moreover, the set Z of all fixed
points of S; on A is closed if the map Sy is closed. The converse is evidently not
always true.

Lemma 3.6. ([5]) Let b € A. Assume that:
(i) The set A and the set Z of all fized points of S1 are closed.
(ii) The inverse value Sy (b) is open in A.
(iii) T'(., b) is lower semicontinuous in the first variable.
(iv) R(.,b,.) is closed in the first and the third variables.
Then, the set P(b) is closed.

Corollary 3.7. The following conditions are sufficient for (VR) to have a solution:

(i) (A;T) is a compact partial KKM space.

(ii) The set of all fized points of Sy is closed.

(iii) The map S has open inverse values and, for every b € A, the I'-convez hull
of S2(b) is contained in S1(b).

(iv) For every given b € A fized, T(.,b) is lower semicontinuous in the first
variable.

(v) The relation R is KKM and, for every given b € A, R(.,b,.) is closed in the
first and the third variables.

Proof. Apply Lemma 3.6 and Theorem 3.4. ]

When A is a nonempty convex compact subset of a (not necessarily Hausdorff)
topological vector spaces, Corollary 3.7 reduces to Luc [5, Corollary 3.1].

The concept of KKM relations can be found in the majority of papers on vari-
ational inequalities in one or another form. Luc [5] mentioned some of them as
follows:

(i) Diagonally Quasiconvex Maps.
(ii) Properly Quasimonotone Maps.
(iii) Quasiconvex Inclusions.

4. CRITERIA BASED ON FIXED POINTS

The criteria that we are going to establish in this section are based on Corollary
2.2, in which fixed point theorems are involved. As before, it is assumed that
A = B is a nonempty subset of a partial KKM space (X;I') and that (Y;A) is
another partial KKM space. Consider the map @) : A — A defined by

Q(a) ={x € A: R(a,z,y) does not hold for some y € T'(a,x)}.
It can be seen that
Sa(a), if a ¢ Si(a);

ANP{a) = {Sg(a) NQ(a), else.
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The next result gives a relationship between R, Pr and Q.

Lemma 4.1. The following assertions hold:

(i) For a € A, the relation R(a,a,y) holds for all y € T'(a,a) if and only if a is
not a fized point of Q. In particular, if R is KKM, then @ has no fized points.

(i) If Q(a) is T'-convex for all a € A and if Q does not have fized points, then R
is KKM.

(iii) For a € A, one has A\ Q@ (a) = Pg(a).

Consequently, the map @ has open inverse values if and only if the map Pr has
closed values.

Proof. The first assertion is clear. For the second assertion, suppose to the contrary
that R is not KKM. Then, there exist N = {ai,...,ax} € (4) and a € 'y such
that, for each i, R(a,a;,y;) does not hold for some y; € T'(a,a;). In other words,
all a;’s belong to Q(a). Under the convexity hypothesis, a is a fixed point of @, a
contradiction. In the last assertion, the equality is obtained by direct calculation.

O

When A is a nonempty convex compact subset of X, and X and Y are (not nec-
essarily Hausdorff) topological vector spaces, Lemma 4.1 reduces to Luc [5, Lemma
3.1].

The next result is a consequence of Theorem 3.4 and Lemma 4.1, but we shall
give another proof based on the Fan-Browder fixed point theorem in our abstract
convex space theory, which states that, if (A;T") is a compact partial KKM space
and if G : A — A'is a multimap with A = J,., intG~(a), then there is some a € A
belonging to the I'-convex hull of G(a).

Theorem 4.2. The problem (VR) has a solution if the following conditions hold:
(i) (A;T1) is a compact partial KKM space.
(ii) The set of all fized points of S1 on A is closed.
(iii) The map Sy has I'-convez values and open inverse values, and So(a) C S1(a)
for every a € A.
(iv) The map @ has T'-convex values, open inverse values and no fixved points.

Proof. We recall that Z denotes the set of all fixed points of S; on A. Consider the
multimap A\ P~ on A. If, for some point a € A, the set A\ P~ (a) is empty, then a
is a solution of (VR) (Corollary 2.2). Assume that this map has nonempty values.
It follows that A =J,c4(A\ P~)(a). Moreover, one has

[A\P7 ] (a)={x € A\E:a€ Sy(z)} U{zx € E:ac Sy(x)NQ(z)}

={(A\2)uQ (a)} N5, (a).

By the hypotheses (ii)-(iv), this set is open in A. Hence, A = (J,c4int(A \
P7)7(a). Apply the Fan-Browder theorem to find a fixed point @ € A of A\ P~.
In particular, this point belongs to Sa2(a), hence to Z as well. By this, a € Q(a),
which contradicts (iv). O

When A is a nonempty convex compact subset of a (not necessarily Hausdorff)
topological vector space, Theorem 4.2 reduces to Luc [5, Theorem 4.1].
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Until now, all proofs are imitations of corresponding ones of Luc [5], and some
of other results of him not mentioned here also can be extended to abstract convex
spaces.

5. COMMENTS ON LucC, SARABI, AND SOUBEYRAN 2010 [6]

In [6], two main existence conditions for solutions of variational relation problems
are established without convexity. The first one is based on a finite solvability
property and the second one on generalized KKM map. These conditions unify
and strengthen several existing results in the literature on the topic. A model of
satisficing process by rejection is considered which gives an economic interpretation
of the introduced concepts.

In Section 4 of [6], the authors establish existence conditions for variational rela-
tion problems that share certain properties of the so-called KKM maps.

We will use generalized KKM maps in the sense of [15]. Now we assume that A
and B are nonempty subsets of a abstract convex space (X;T).

Definition 5.1. The relation R is said to be generalized KKM if for every finite
subset {b1,...,by} of B there exists a corresponding subset {aq,...,a;} of A such
that cor{ai,...,am} C A, for any subset 7 C {1,...,m} and any a € cor{a; : j €
I'}, one can find some index i € I such that R(a,b;,y) holds for all y € T'(a, b;).

As for multimaps, KKM relations in [1, 13] are generalized KKM, but the converse
is not true in general.

Here is the main result of this section on existence of solutions of (VR) when the
relation R is generalized KKM.

Theorem 5.2. The following conditions are sufficient for (VR)to have a solution:
(i) A is a nonempty compact set;
(ii) The multimap P(.) is intersectionally closed on B;
(iii) Si(a) = A for every a € A;
(iv) The relation R is generalized KKM.

Proof. We first prove that P is generalized KKM. Consider a finite subset {b1, ..., b}
of B. Using (iv), we can find a corresponding subset {aq,...,a;,} of A such that
for any subset I C {1,...,m} and any a € cor{a; : j € I}, one can find some index
j € I such that R(a,b;,y) holds for all y € T'(a,b;). This yields a € P(b;) which
shows that P is generalized KKM. Since P is generalized KKM, for each b € B
there is some a € A such that a € P(b). In particular P(b) is nonempty for each
b € B. Now consider the multimap b — cl(P(b)). It is a generalized KKM map
too. Similarly to Lemma 4.1 of [5] the family {cl(P(b)) : b € B} has the finite
intersection property. By the abstract convex space version of the 1961 KKM-Fan
lemma, that family has a common point, and so does the family {P(b) : b € B} in
view of (ii). By Theorem 2.1 of [5] problem (VR) has a solution. O

The above theorem generalizes Theorem 3.1 of [5] in three aspects; for details,
see [6].
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6. COMMENTS ON BArLAJ 2013 [1]

Balaj [1] investigates the existence of solutions for three types of variational
relation problems which encompass several generalized equilibrium problems, vari-
ational inequalities and variational inclusions studied in a long list of papers in the
field.

Let X, Y and Z be nonempty sets. A nonempty subset R of the product X xY x Z
determines a relation R(z,y, z) in a natural manner: we say that R(x,y, z) holds if
and only if (x,y,2) € R. When Z is a parameter set, then R is called a variational
relation.

Now we generalize Balaj’s three types as follows:

Assume that (X;T') is an abstract convex space and Y and Z are two sets,
endowed for each problem with an adequate topological and/or algebraic structure.
Let T: X —2Y, P: X — 27 be two multimaps and R(z,y, z) be a relation linking
elements x € X, y €Y, z € Z.

(VRP1a) Find Z € X such that R(Z,y, z) holds for all y € T'(Z) and all z € P(Z).

(VRP1b) Find T € X such that for each y € T(%) there exists z € P(Z) such
that R(Z,y, z) holds.

(VRP2) Find 7 € X and z € P(Z) such that R(Z,y, z) holds for all y € T'(Z).

These problems encompass several generalized equilibrium problems, variational
inequalities and variational inclusions studied in a long list of papers in the field.
Actually, Balaj [1] listed a few typical examples.

In order to study the solution existence of problems (VRPla) and (VRP1b),
Balaj established the inclusion result [1, Theorem 3.1], which can be generalized as
follows:

Theorem 6.1. Let (X;I') be a partial KKM space, and Y be a nonempty set.
Assume that T, S : X — 2¥ are two multimaps with nonempty values satisfying:
(i) T has open fibers and X \ T~ (y) is compact for at least one y € Y;
(ii) S has closed fibers;
(iii) the set Z ={x € X :x € (S™T)(x)} is compact;
(iv) S™ is a generalized KKM map.
Then there exists T € X such that T'(Z) C S(Z).

Proof. Consider the map @ : Y — 2% defined by Q(y) = (X \ T~ (y))U(ZNS~(y)).
We show that @ is a generalized KKM map as in [15]. If {yo, ..., yn } is a finite subset
of Y, by (iv), there exists a subset {zg,...,x,} of X such that for each subset of
indices I C {0, ...,n},

cor{z; 11 €I} C US_(yZ-). (1)
i€l
Let = € cop{x; : i € I}. We prove that (1) implies

x € UQ(%) (2)

iel
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If x € Z, by (1) one has
vezZn(JS W) =JZns W) cJew)

iel iel iel
If x € X\ Z, we claim that x € X \ T (y;) for some index i € I. Suppose on the
contrary that y; € T'(z) for all ¢ € I. Then S~ (y;) C S~ (T'(x)). In view of (1), we
have
xe€cor{z; i€} C US_(yi) C ST (T(x));
i€l

a contradiction. Hence, z € (J;c;(X \ T (1)) C U;e;r @(:). Since @ has closed
values and Q(y) is compact for at least one y € Y, by a KKM type result in [11],
there exists T € ),y Q(y). For each y € T(Z), i.e. T ¢ X \ T (y), since T € Q(y),
we have Z € S~ (y), that is y € S(z). Thus T(z) C S(Z) and this means exactly the
conclusion of the theorem. |

Remark 6.2. Let us observe that
Z={xeX:JyeYsuchthat e T (y)NS (y)} = (T~ NS)(Y).

Hence condition (iii) in Theorem 6.1 means actually the compactness of the range
of the map T~ NS~.

Actually Theorem 6.1 is due to Balaj [1, Theorem 3.1] for a convex set X in
a topological vector space, and we followed his proof. He applied his theorem to
study the solution existence of certain variational relation problems (VRP1la) and
(VRP1b).

Other results in [1] might be extended to abstract convex spaces.

REFERENCES

[1] M. Balaj, Three types of varitional relation problems, Taiwan. J. Math. 17(1) (2013) 47-61.
DOI:10.11650/tjm.17.2013.1558

[2] M. Balaj and D. T. Luc, On mized variational relation problems, Comput. Math. Appl. 60
(2010) 2712-2722.

[3] S.-S. Chang and Y. Zhang, Generalized KKM theorem and variational inequalities, J. Math.
Anal. Appl. 159 (1991) 208-223.

[4] L.-J. Lin, Variational relation problems and equivalent forms of generalized Fan-Browder fized
point theorem with applications to Stampacchia equilibrium problems, J. Glob. Optim. 53(2)
(2012) 215-229. DOI 10.1007/s10898-011-9676-3.

[5] D. T. Luc, An abstract problem in variational analysis, J. Optim. Theory. Appl. 138 (2008)
65-76. DOI 10.1007/s10957-008-9371-9

[6] D. T. Luc, E. Sarabi, and A. Soubeyran, Ezistence of solutions in variational relation problems
without converity, J. Math. Anal. Appl. 364 (2010) 544-555.

[7] S. Park, The KKM principle in abstract convex spaces: Equivalent formulations and applica-
tions, Nonlinear Anal. 73 (2010) 1028-1042.

[8] S. Park, Review of recent studies on the KKM theory, 11, Nonlinear Funct. Anal. Appl. 19(1)
(2014) 143-155.

[9] S. Park, A unificalion of generalized Fan-Browder type alternatives, J. Nonlinear Convex Anal.
17(1) (2016) 1-15.

[10] S. Park, Basis of applications of the KKM theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser.
55(2) (2016) 1-33.

[11] S. Park, A history of the KKM Theory, J. Nat. Acad. Sci., ROK, Nat. Sci. Ser. 56(2) (2017)
1-51.



VARIATIONAL RELATION PROBLEMS IN ABSTRACT CONVEX SPACES 9

[12] S. Park, On multimap classes in the KKM theory, RIMS Kékyiroku, Kyoto Univ. 2017, to
appear.

[13] S. Park, Variational relations in abstract convezr spaces, Res. Fixed Point Theory Appl. vol.
2018, Article ID 2018014, 08 pages.

[14] S. Park, Various variational relation problems in abstract convez spaces, Advances in Nonlinear
Variational Inequalities 22(1) (2019) 1-13.

[15] S. Park and W. Lee, A unified approach to generalized KKM maps in generalized convex spaces,
J. Nonlinear Convex Anal. 2 (2001) 157-166.

(Sehie Park) THE NATIONAL ACADEMY OF SCIENCES, REPUBLIC OF KOREA; SEOUL 06579
AND DEPARTMENT OF MATHEMATICAL SCIENCES, SEOUL NATIONAL UNIVERSITY, SEOUL 08826,
KoRreEA

E-mail address: park35@snu.ac.kr; sehiepark@gmail.com; parksehie.com



