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ABSTRACT. This paper is concerned with a multi-objective optimization
problem, where the objective functions are sum of square convex polyno-
mials and the constraint is a polynomial matrix inequality. We propose
methods for finding (exactly) efficient solutions to the considered multi-
objective optimization problem.

1. INTRODUCTION

In this paper, we are interested in a multi-objective optimization problem,
where the objective functions are SOS-convex polynomials (see Definition 2.2)
and the constraint is an SOS-concave polynomial matrix (see Definition 2.4).
Note that the notion of SOS-convex polynomial has been proposed as a tractable
sufficient condition for convexity based on semidefinite programming; see e.g.,
[1, 2, 8, 12] and the references therein. Note also that, for an SOS-convex
optimization problem, its optimal value as well as optimal solution(s) can be
found by solving a single semidefinite programming problem [13].

It is well-known that one of the most famous methods for studying multi-
objective optimization problems is the scalarization approach [3, 4, 5, 6, 7, 9,
10, 15]. Tt consists in solving one or several parametrized single-objective op-
timization problems to find an optimal solution to the original multi-objective
problem.

In this paper, we are concerned with the study of finding efficient solutions to
the multi-objective optimization problem. To this end, we first establish strong
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duality results for the formulated scalar objective problem, its semidefinite pro-
gramming relaxation dual problem, and the dual problem of the semidefinite
programming problem, for a mentioned scalarization approach. Then, accord-
ing to the results, we propose methods of finding (exactly) efficient solutions
to the considered problems.

The rest of the paper is organized as follows. Section 2 provides some ba-
sic notations, preliminaries and several auxiliary results. Section 3 states the
problems formulation and solution concepts and gives the main results of the
paper, which are methods for finding efficient solutions to problem (MP). Fi-
nally, conclusions are given in Sect. 4.

2. PRELIMINARIES

We begin this section by fixing the notations and preliminaries. By (-, -) and
I - |, we denote, respectively, the inner product and the norm in the Euclidean
space with dimension n. The non-negative orthant of R™ is defined by R’} :=
{z := (x1,...,2,): x; > 0,4 = 1,...n}. The space of all real polynomials in
the variable x is denoted by R[z]. Moreover, the space of all real polynomials
in the variable z with degree at most d is denoted by R[z];. The degree of a
polynomial f is denoted by deg f.

We say that a real polynomial f is sum of squares (SOS) if there exist real
polynomials f;, I = 1,...,r, such that f = >,_, f2. The set consisting of all
sum of squares real polynomial is denoted by ¥2. In addition, the set consisting
of all sum of squares real polynomial with degree at most d is denoted by 2.
For a multi-index o € N”, let || := Y. | a;, and let N} := {a € N : |a| < d}.
The notation z® stands for the monomial z{* ---2%". The canonical basis of
Rlx]q is denoted by

(2.1) wa(w) == (%) aeny = (1,21, ... T B Y. N S L S e

which has dimension s(d) := ("}9).

Let S™ be the set of n x n symmetric matrices. For M, N € S, (M,N) :=
tr(M N), where “tr” denotes the trace (sum of diagonal elements) of a matrix.
For X € §", X > 0 (resp., X > 0) means that X is positive semidefinite
(resp., positive definite) matrix. Let S} := {X € S™: X > 0} be the set of
n X n symmetric positive semidefinite matrices. The gradient and the Hessian
of a polynomial f € R[x] at a point Z are denoted by Vf(Z) and V2f(Z),
respectively.

Below, we first recall a useful and celebrated result, i.e., an SOS polynomial
can be written as a sum of squares via positive semidefinite programming.
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Proposition 2.1. [14] A polynomial f € R[z]2q has a sum of squares decom-
position if and only if there exists a real symmetric and positive semidefinite
matriz X € RYD*s() sych that f(x) = va(x)T Xva(z) for all x € R™.

We now recall a very interesting subclass of convex polynomials in R[z]
introduced by Helton and Nie [8]; see also [1, 2].

Definition 2.2. [8] A polynomial f € R[z] is called SOS-convez if there exists
a matrix polynomial F(x) such that V2 f(z) = F(z)F(x)", equivalently,

f@) = fy) = VI (@ -y)
is a sum of squares polynomial in R[x;y] (with respect to variables z and y).

Observe that, an SOS-convex polynomial is convex; the converse is not true,
i.e., there exists a convex polynomial which is not SOS-convex [1, 2].

In what follows, we recall a result, which is an extension of Jensen’s inequal-
ity to a class of linear functionals that are not necessarily probability measures
when one restricts its application to the class of SOS-convex polynomials [13].

Lemma 2.3. [13] Let f € R[z]aa be SOS-conver, and let y = (Ya)aeny, satisfy
yo = 1 and ZaeNgd YaBa = 0. Let L, : Rlz] — R be a linear functional defined
by Ly(f) := ZaeNgd faYa, where f(x) = ZaeNgd fax®. Then
Ly(f) = f(Ly(x)),
where Ly(x) := (Ly(21), ..., Ly(2n)) = () |a|=1-
We close this section by recalling the concept of the matrix SOS-concavity.

Definition 2.4. [16] An m x m symmetric polynomial matrix G(z) is called
matriz SOS-concave if for every £ € R™, there exists a polynomial matrix F¢(z)
in x such that

~V2(TG(2)€) = Fe(z)Fe()",
equivalently, —£7G(x)¢ is SOS-convex for all £ € R™.

3. PROBLEMS FORMULATION AND SOLUTION CONCEPTS

Consider the following multi-objective optimization problem with polyno-
mial objective functions over a polynomial matrix SOS-concave constraint,
(MP) min (fi(x),..., fp(z))

TER™
st. G(z) =0,
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where f;: R® — R, j = 1,...,p are SOS-convex polynomials and G(z) is a
polynomial m x m matrix SOS-concave constraint. We denote the feasible set
of (MP) by

(3.1) K :={x eR":G(z) > 0},
Next, we recall the notions of efficient solutions to (MP).

Definition 3.1. A point € K is said to be an efficient solution to prob-
lem (MP), if

f(z) — f(z) ¢ —RE\{0}, Vz € K.

Recall the following scalar optimization problem [4, 7], which is transformed
from (MP) by the hybrid method:

(P(2)) min Z p;fi(x)

where p € int RY is fixed and z € R™ is a parameter. Then, the feasible set of
problem (P(z)) is given by

(3.2) K(z)={z eR":G(z) =0, fi(z) < fi(2), j=1,...,p}.

It is worth mentioning that the feasible set K(z) as in (3.2) is nonempty when
the parameter z is chosen in the feasible set of (MP).

Now we formulate the semidefinite programming relaxation dual problem
for (P(z)) as follows:

(Q(2))  sup v

7. XAN

NE

5.t. (P (f3)o +X; ((f3)o = f3(2))) = (A, Go) =~ = (X, Bo),

<
Il
-

M=

(Pi(fi)a+Xi(fi)a) — (A, Ga) = (X, Ba), o € N3, \{0},

<
Il
-

vER, X e S W AesT A >0, i=1,...,p.
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In addition, the dual problem of (Q(z)) is the following semidefinite program-
ming problem

p
~ - m
(Q(2)) | nf > D rilliava
Jj=1 aeNg,
s.t. Z (fi)aYa < fi(2), 5=1,...,p,
aeNZ,
Z YaGa = 0, Z YaBa = 0, yo = 1.
aeNZ, a€ENg,

We would mention here that the weak duality between (Q(z)) and (Q(z))
always holds if the two problems have nonempty feasible set, i.e., inf (Q(z)) >

sup (Q(2)) (see, e.g., [17]).

Now, we first give a strong duality result for (P(z)), (Q(z)), and (Q(z)). To
do this, we need the following assumption.
(H3) For a given z € K (K is as in (3.1)), the Slater-type condition holds
for the problem (P(2)), that is, there exists & € R™ such that

G(z) = 0 and f;j(%) — fi(z) <0, j=1,...,p.
Theorem 3.2. Let z € K be given. If (H3) holds, then

inf (P(2)) = max (Q(2)) = inf (Q(2)).
Proof. Let z € K be given. We first show that inf (P(z)) < max (Q(z)). Since
the feasible set K(z) is nonempty, we may assume that 5 := inf (P(2)) € R.
Indeed, if inf (P(2)) = —o0, the desired inequality holds trivially. Note that for
any A € ST', —(A,G(x)) is convex and for each j = 1,...,p, f; is also convex.
Since the assumption (H3) holds, it follows from the Lagrangian-type duality
for convex programming that

2;>0,A€ST zER™

¥=_ max  inf Z(ijj($)+/\j(fj(ﬂf)—fj(Z)))—<A7G(I)>
e

It means that there exist R% and Ae St such that

7= inf ¢ (pifi(@) + X (f5(@) = £3(2) = (A, G(a))

Let h(x) := Z?:l (pifi(x) + X; (f;(z) = fi(2))) — (A, G(z)) — 7. Note that f;,
j=1,...,p, and —(A,G(-)) are SOS-convex polynomials. This implies that
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h is a non-negative SOS-convex polynomial. It follows from [11, Remark 3.2]
that h is sum of square with degree at most 2d, i.e.,

_Z pifi+ % (f; = £;(2) — (K, G()) — 7 € T3,

By Proposition 2.1, there exists X € S_S,_(d) such that for all x € R",
P
> (pifi@) + X (fi(x) = £i(2)) — (K, G(x)) — 7 = (X, va(x)va(z)") .
j=1

Let vg(z)va(z)T = ZaeNgd x*B,. Then we have

> (2550 + %5 ((F)o = £5(2)) = (K, Go) =7 = (X, Bo),

ST (0:()a + Ni(f)a) — (K, Ga) = (X, Ba), a € N3;\{0}.

Hence, (’7,7, A, .., j\p)) is a feasible solution of (Q(z)), and so, we get
inf (P(2)) =7 < max (Q(2)).
Now, we prove that inf (P(z)) > inf (Q(z)). Let x be any feasible solution
of (P(2)). and let v :=3>-"_, p; fj(z). Letting y := va(z) as in (2.1), we have
Z (fj)aya:fj( <f]() Jj=1,...,p, 1=0,1,...,¢;

a€NG,

)
> ¥aGa=G(x) =0
aeNZ,
yy' = Y YaBa = 0.
a€NG,

So, y is a feasible solution of (Q(z)) Moreover, since z is an arbitrary feasible
solution of (P(z)), we obtain

p p
= ijfj Z Z i (fi)aya = inf (Q(2)).
Jj=1 j=1 aeNg,

Note that the feasible sets of (Q(z)) and (Q(z)) are nonempty. Hence, by
the Esual weak duality theorem for semidefinite programming, we see that
inf (Q(z)) > sup (Q(z)). Thereby, we get the desired conclusion. O

The following proposition suggests a way to obtain an efficient solution to
problem (MP) by solving problem (P(z)).
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Proposition 3.3. [7, Propsition 12] Let z € K. If T is an optimal solution
to problem (P(z)), then T is also an optimal solution to problem (P(Z)); in
addition, T is an efficient solution to problem (MP).

The following theorem shows that an efficient solution to problem (MP) can
be obtained by solving a single semidefinite programming problem.

Theorem 3.4. Let z € K be given. Suppose that the assumption (H3) holds.

~

If § is an optimal solution to problem (Q(z)), then T := (§)|a|=1 is an efficient
solution to problem (MP).

Proof. Suppose that 7 is an optimal solution to the problem (Q(z)) Then, we
have

(33) > (fi)adia < fi(2), j=1,....p,

a€NG,

> FaGa =0,

a€eNG,
(3.4) > FaBa =0, yo = 1.
a€NG,
Now, let T := (Lg(x1),..., Lg(7,)) = (¥)jaj=1- Note that each f; is an SOS-
convex polynomial and g satisfies (3.4). Then, by Lemma 2.3, we see that
Y (fidaBa = Ly(fj) = f; (Lg(x1),- -, Ly(za)) s =1,....p.
a€eNg,
This, together with (3.3), yields that
(3.5) fi(@) < f3(2), 5=1,....p.
www Note that, for each H € ST,
0> > Ju(H,~Go) = Ly(H,~G(")).
aeNg,
Since for each H € ST, (H,—G(-)) is SOS-convex, according to Lemma 2.3
again, we have
0> Ly(H, ~G()) > (H,~G(Ly(2))) = (H, -G(T)), VH € 5,
i.e., G(Z) = 0. So, T is a feasible solution of (P(z)).
Furthermore, by a similar argument as (3.5), we see that

Z Z /’j(fj)aga > Zﬂjfj(d_?).

Jj=1aeNy,
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So, from Theorem 3.2, we casily see that Z is an optimal solution to the prob-
lem (P(z)), and thus, by Proposition 3.3, the desired result follows. O

4. CONCLUSIONS

In this paper, we studied a multi-objective optimization problem admiring
the form (MP). We solve the problem (MP) by employing the hybrid method.
In conclusion, we proved that finding (exactly) efficient solutions to a multi-
objective optimization problem of the form (MP) is tractable by using the
hybrid method.
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