CONVERGENCE THEOREMS TO COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS IN HILBERT SPACES

ATSUMASA KONDO

ABSTRACT. In this article, we present methods for finding common fixed points of nonexpansive mappings. First, Mann type weak convergence theorems are proved. As a corollary, we obtain an alternative method to Mann's type iteration for finding a fixed point of a nonexpansive mapping. Also, a strong convergence theorem of Halpern type iterations is presented. The results base on those of Kondo and Takahashi [6].

1. INTRODUCTION

Let *H* be a real Hilbert space, let *C* be a nonempty subset of *H*, and let *S* be a mapping from *C* into *H*. The set of fixed points of *S* is denoted by $F(S) = \{x \in C : Sx = x\}$. A mapping $S : C \to H$ is called *nonexpan*sive if $||Sx - Sy|| \le ||x - y||$ for all $x, y \in C$. For nonexpansive mappings, many approximation methods for finding fixed points have been intensively studied. The problem is as follows:

Find an element $\widehat{x} \in F(S)$.

The following iteration is called Mann's type [8]:

(1.1)
$$x_{n+1} = \lambda_n x_n + (1 - \lambda_n) S x_n \text{ for all } n \in \mathbb{N},$$

where $x_1 \in C$ is given. In (1.1), \mathbb{N} is the set of natural numbers, and $\{\lambda_n\}$ is a sequence of real numbers in the interval [0, 1]. It is known that under the iteration scheme (1.1), the sequence $\{x_n\}$ converges weakly to a fixed point of S; see, for example, Reich [10] and Takahashi [13]. The next iteration is called Halpern's type [2]:

(1.2)
$$x_{n+1} = \lambda_n x + (1 - \lambda_n) S x_n \text{ for all } n \in \mathbb{N}$$

where $x_1 = x \in C$ is given. Under the iteration scheme (1.2), $\{x_n\}$ converges strongly to a fixed point of S; see, for example, Wittmann [16].

For two mappings S and T, consider a problem as

Find an element $\overline{x} \in F(S) \cap F(T)$,

which is called a common fixed point problem. There are many studies for finding common fixed points of nonlinear mappings; see, for example, Lions

Key words and phrases. common fixed point, nonexpansive mapping, Mann's iteration, Halpern's iteration.

ATSUMASA KONDO

[7], Shimizu and Takahashi [11], Atsushiba and Takahashi [1], Iemoto and Takahashi [4], Takahashi [14], and Kondo and Takahashi [6].

In this short article, we present methods for finding common fixed points of two nonexpansive mappings. The results base on those of Kondo and Takahashi [6]. First, Mann type weak convergence theorems are obtained (Theorems 3.1). As a corollary, we obtain an alternative method to Mann's type iteration (1.1) for finding a fixed point of a nonexpansive mapping. Strong convergence theorem of Halpern type iterations is also presented (Theorems 4.1 and Corollary 4.1).

2. Preliminaries

This section provides background information and results. Let H be a real Hilbert space with inner product $\langle \cdot, \cdot \rangle$ and norm $\|\cdot\|$. For four elements $x, y, z, w \in H$, it holds that

(2.1)
$$2\langle x-y, z-w\rangle = ||x-w||^2 + ||y-z||^2 - ||x-z||^2 - ||y-w||^2$$

We can easily prove the equation (2.1) as follows:

$$\begin{aligned} \|x - w\|^{2} + \|y - z\|^{2} - \|x - z\|^{2} - \|y - w\|^{2} \\ &= \|x\|^{2} - 2\langle x, w \rangle + \|w\|^{2} + \|y\|^{2} - 2\langle y, z \rangle + \|z\|^{2} \\ &- \left(\|x\|^{2} - 2\langle x, z \rangle + \|z\|^{2}\right) - \left(\|y\|^{2} - 2\langle y, w \rangle + \|w\|^{2}\right) \\ &= -2\langle x, w \rangle - 2\langle y, z \rangle + 2\langle x, z \rangle + 2\langle y, w \rangle \\ &= -2\langle x, w - z \rangle - 2\langle y, z - w \rangle \\ &= 2\langle x, z - w \rangle - 2\langle y, z - w \rangle \\ &= 2\langle x - y, z - w \rangle. \end{aligned}$$

The strong and weak convergence of a sequence $\{x_n\}$ in H to an element $x (\in H)$ are denoted by $x_n \to x$ and $x_n \to x$, respectively. Regarding weak and strong convergence, the following are well-known:

(A) a closed and convex subset of a real Hilbert space is weakly closed, that is, $\{x_n\} \subset C$ and $x_n \rightharpoonup u \Longrightarrow u \in C$;

(B) if $x_n \to x$ and $y_n \to y$, then $\langle x_n, y_n \rangle \to \langle x, y \rangle$; see Problem 5.4.1 in Takahashi [13].

(C) $x_n \to \overline{x}$ if and only if for any subsequence $\{x_{n_i}\}$ of $\{x_n\}$, there exists a subsequence $\{x_{n_i}\}$ of $\{x_{n_i}\}$ such that $x_{n_i} \to \overline{x}$.

Let C be a nonempty, closed and convex subset of H. If a mapping $S: C \to H$ is nonexpansive, F(S) is closed and convex in C. A mapping $S: C \to H$ with $F(S) \neq \emptyset$ is called *quasi-nonexpansive* if $||Sx - u|| \le ||x - u||$ for all $x \in C$ and $u \in F(S)$. It is easily ascertained that a nonexpansive mapping with $F(S) \neq \emptyset$ is quasi-nonexpansive.

Let F be a nonempty, closed, and convex subset of H. For any $x \in H$, there exists a unique nearest point $p \in F$, that is, $||x - p|| = \inf_{v \in F} ||x - v||$. This correspondence is called a *metric projection* from H onto F, and is

 $\mathbf{2}$

denoted by P_F . For the metric projection P_F from H onto F, it holds that

(2.2)
$$\langle x - P_F x, P_F x - u \rangle \ge 0$$

for all $x \in H$ and $u \in F$. For more details, see Takahashi [12] and [13].

For existence of a common fixed point, we know the following theorem that guarantees the existence of a common fixed point of commutative nonexpansive mappings; For its proof, see, for example, Hojo [3].

Theorem 2.1. Let C be a nonempty, closed and convex subset of H, and let S and T be nonexpansive mappings of C into itself such that ST = TS. Suppose that there exists an element $z \in C$ such that $\{S^kT^lz : k, l \in \mathbb{N}\}$ is bounded. Then, $F(S) \cap F(T)$ is nonempty.

From Theorem 2.1, we know a set of sufficient conditions for the existence of a common fixed point of nonexpansive mappings. In the main theorems of this article, we assume the existence. The following lemma will be used in the proof of a main theorem. For completeness, we present a proof for each lemma.

Lemma 2.1 ([15]). Let F be a nonempty, closed, and convex subset of H, let P_F be the metric projection from H onto F, and let $\{x_n\}$ be a sequence in H. If

$$(2.3) ||x_{n+1} - q|| \le ||x_n - q||$$

for all $q \in F$ and $n \in \mathbb{N}$, then $\{P_F x_n\}$ is convergent in F.

Proof. Since H is complete and F is closed in H, it holds that F is complete. Thus, it suffices to show that $\{P_F x_n\}$ is a Cauchy sequence in F. Let $m, n \in \mathbb{N}$ such that $m \geq n$. Since $P_F x_n \in F$, we have from (2.2) that

$$2\langle x_m - P_F x_m, P_F x_m - P_F x_n \rangle \ge 0.$$

By using (2.1), we obtain

$$||x_m - P_F x_n||^2 - ||x_m - P_F x_m||^2 - ||P_F x_m - P_F x_n||^2 \ge 0.$$

Since $m \ge n$, it follows from the assumption (2.3) that

(2.4)
$$||x_m - P_F x_m||^2 + ||P_F x_m - P_F x_n||^2 \leq ||x_m - P_F x_n||^2$$

 $\leq ||x_n - P_F x_n||^2.$

Since $||P_F x_m - P_F x_n||^2 \ge 0$, we have from (2.4) that

$$||x_m - P_F x_m||^2 \le ||x_n - P_F x_n||^2$$

for all $m, n \in \mathbb{N}$ such that $m \ge n$. This means that $\{\|x_n - P_F x_n\|^2\}$ is monotone decreasing, and thus, it is convergent. It holds from (2.4) that

$$||P_F x_m - P_F x_n||^2 \le ||x_n - P_F x_n||^2 - ||x_m - P_F x_m||^2.$$

Since the right-hand side converges to 0 as $m, n \to \infty$, we have that $P_F x_m - P_F x_n \to 0$. Thus, $\{P_F x_n\}$ is a Cauchy sequence. This completes the proof.

Lemma 2.2 ([9]). Let $x, y, z \in H$, and let $a, b, c \in \mathbb{R}$ such that a+b+c=1, where \mathbb{R} stands for the set of real numbers. Then,

$$\|ax + by + cz\|^{2}$$

= $a \|x\|^{2} + b \|y\|^{2} + c \|z\|^{2} - ab \|x - y\|^{2} - bc \|y - z\|^{2} - ca \|z - x\|^{2}.$

Proof. By easy calculations, we have the following:

$$\begin{aligned} \|ax + by + cz\|^2 &= \langle ax + by + cz, \ ax + by + cz \rangle \\ &= a^2 \|x\|^2 + ab \langle x, \ y \rangle + ac \langle x, \ z \rangle \\ &+ ba \langle y, \ x \rangle + b^2 \|y\|^2 + bc \langle y, \ z \rangle \\ &+ ca \langle z, \ x \rangle + cb \langle z, \ y \rangle + c^2 \|z\|^2 \\ &= a^2 \|x\|^2 + b^2 \|y\|^2 + c^2 \|z\|^2 \\ &+ 2ab \langle x, \ y \rangle + 2bc \langle y, \ z \rangle + 2ca \langle z, \ x \rangle \end{aligned}$$

Using the relationship $2\langle u, v \rangle = ||u||^2 + ||v||^2 - ||u - v||^2$, we have that

$$\begin{aligned} \|ax + by + cz\|^{2} \\ &= a^{2} \|x\|^{2} + b^{2} \|y\|^{2} + c^{2} \|z\|^{2} \\ &+ ab \left(\|x\|^{2} + \|y\|^{2} - \|x - y\|^{2} \right) + bc \left(\|y\|^{2} + \|z\|^{2} - \|y - z\|^{2} \right) \\ &+ ca \left(\|z\|^{2} + \|x\|^{2} - \|z - x\|^{2} \right) \\ &= a \left(a + b + c \right) \|x\|^{2} + b \left(a + b + c \right) \|y\|^{2} + c \left(a + b + c \right) \|z\|^{2} \\ &- ab \|x - y\|^{2} - bc \|y - z\|^{2} - ca \|z - x\|^{2} \end{aligned}$$

Since a + b + c = 1, we obtain the desired result.

Letting c = 0 in Lemma 2.2, we obtain

(2.5)
$$\|ax + by\|^2 = a \|x\|^2 + b \|y\|^2 - ab \|x - y\|^2$$

where a + b = 1. For the equation (2.5), see Theorem 6.1.2 in Takahashi [13]. Substituting a = b = 1/2 into (2.5), we have the parallelogram law $||x + y||^2 + ||x - y||^2 = 2 ||x||^2 + 2 ||y||^2$. Therefore, Lemma 2.2 and (2.5) are generalization of the parallelogram law. It is known that more general equalities than Lemma 2.2 hold; see [6].

The next lemma is also mentioned in Takahashi [13] as Problem 6.2.3. The proof has been developed by many existing studies; see, for example, Kocourek et al. [5].

Lemma 2.3. Let C be a nonempty, closed and convex subset of H, and let S be a nonexpansive mapping from C into H. Let $\{x_n\}$ be a sequence in C such that $x_n - Sx_n \to 0$ and $x_n \to u$. Then, $u \in F(S)$.

Proof. First, note that since C is closed and convex, it holds from (A) in Section 2 that it is weakly closed. Since $\{x_n\} \subset C$ and $x_n \to u$, we have

that $u \in C$. Since S is a mapping from C into H, there exists an element Su of H. We prove that Su = u. Since S is nonexpansive, it holds that

$$|Sx_n - Su||^2 \le ||x_n - u||^2$$

for all $n \in \mathbb{N}$. Then, we have that

$$||Sx_n - x_n + x_n - Su||^2 \le ||x_n - u||^2,$$

and hence,

$$||Sx_n - x_n||^2 + 2\langle Sx_n - x_n, x_n - Su \rangle + ||x_n - Su||^2 \le ||x_n - u||^2.$$

Similarly, we have

$$||Sx_n - x_n||^2 + 2 \langle Sx_n - x_n, x_n - Su \rangle + ||x_n - u||^2 + 2 \langle x_n - u, u - Su \rangle + ||u - Su||^2 \le ||x_n - u||^2.$$

We obtain

 $||Sx_n - x_n||^2 + 2\langle Sx_n - x_n, x_n - Su \rangle + 2\langle x_n - u, u - Su \rangle + ||u - Su||^2 \le 0.$ Since $x_n - Sx_n \to 0$ and $x_n \to u$, we have from (B) in Section 2 that $\langle Sx_n - x_n, x_n - Su \rangle \to \langle 0, u - Su \rangle = 0.$ Thus, it holds in the limit as $n \to \infty$ that $||u - Su||^2 \le 0$, which implies that u = Su.

To use Lemma 2.3, crucial steps we need to show are as follows: (a) a sequence $\{x_n\} (\subset C)$ is bounded; and (b) $x_n - Sx_n \to 0$. Once (a) and (b) are demonstrated, we can conclude from (a) that there exists a subsequence $\{x_{n_i}\}$ of $\{x_n\}$ and $u \in H$ such that $x_{n_i} \to u$. Then, we have from (b) and Lemma 2.3 that u = Su.

3. Weak Convergence

In this section, we prove a weak convergence theorem, which is a simple version of that of Kondo and Takahashi [6]. As a corollary, we obtain a method to approximate weakly to fixed points of a nonexpansive mapping, which is an alternative to the iteration scheme (1.1).

Theorem 3.1 ([6]). Let C be a nonempty, closed and convex subset of H, and let S and T be nonexpansive mappings from C into itself. Suppose that $F(S) \cap F(T)$ is nonempty. Let $\alpha, \beta \in (0,1)$ such that $\alpha \leq \beta$, and let $\{a_n\}, \{b_n\}, and \{c_n\}$ be sequences of real numbers in (0,1) such that $a_n + b_n + c_n = 1$ and $0 < \alpha \leq a_n, b_n, c_n \leq \beta < 1$ for all $n \in \mathbb{N}$. Define a sequence $\{x_n\}$ in C as follows:

$$x_{n+1} = a_n x_n + b_n S x_n + c_n T x_n \text{ for all } n \in \mathbb{N},$$

where $x_1 \in C$ is given. Then, the sequence $\{x_n\}$ converges weakly to a common fixed point $\overline{x} \equiv \lim_{n\to\infty} P_F x_n \in F(S) \cap F(T)$, where P_F is the metric projection from H onto $F(S) \cap F(T)$.

Note that when sequences $\{a_n\}, \{b_n\}$, and $\{c_n\}$ are constant coefficients of a convex combination, the required conditions on the sequences are satisfied.

Proof. First, let us verify that there exists the metric projection P_F from H onto $F(S) \cap F(T)$. Since S and T be nonexpansive, F(S) and F(T) are closed and convex subsets of C. Thus, the intersection $F(S) \cap F(T)$ is also closed and convex in C. Since $F(S) \cap F(T) \neq \emptyset$ is assumed, there exists the metric projection P_F from H onto $F(S) \cap F(T)$.

Next, we show that a sequence $\{||x_n - q||\}$ is monotone decreasing for all $q \in F(S) \cap F(T)$. Indeed, since $a_n + b_n + c_n = 1$, S and T are quasi-nonexpansive and $q \in F(S) \cap F(T)$, we obtain

$$\begin{aligned} |x_{n+1} - q|| &\equiv \|a_n x_n + b_n S x_n + c_n T x_n - q\| \\ &= \|a_n x_n + b_n S x_n + c_n T x_n - (a_n + b_n + c_n) q\| \\ &= \|a_n (x_n - q) + b_n (S x_n - q) + c_n (T x_n - q)\| \\ &\leq a_n \|x_n - q\| + b_n \|S x_n - q\| + c_n \|T x_n - q\| \\ &\leq a_n \|x_n - q\| + b_n \|x_n - q\| + c_n \|x_n - q\| \\ &= \|x_n - q\| \end{aligned}$$

for all $n \in \mathbb{N}$. This means that $\{||x_n - q||\}$ is monotone decreasing for all $q \in F(S) \cap F(T)$. As consequences, we obtain the following: (i) The sequence $\{||x_n - q||\}$ is convergent in \mathbb{R} for all $q \in F(S) \cap F(T)$. (ii) From Lemma 2.1, $\{P_F x_n\}$ is convergent in $F(S) \cap F(T)$. We denote the limit by \overline{x} , that is, $\overline{x} \equiv \lim_{n \to \infty} P_F x_n$. (iii) The sequence $\{x_n\}$ is bounded since $\{||x_n - q||\}$ is convergent.

The following inequality is necessary to complete the proof:

(3.1)
$$a_n b_n \|x_n - Sx_n\|^2 + b_n c_n \|Sx_n - Tx_n\|^2 + c_n a_n \|Tx_n - x_n\|^2 \\ \leq \|x_n - q\|^2 - \|x_{n+1} - q\|^2$$

for any $q \in F(S) \cap F(T)$ and $n \in \mathbb{N}$. Indeed, since $a_n + b_n + c_n = 1$, it holds from Lemma 2.2 that

$$\begin{aligned} \|x_{n+1} - q\|^2 \\ &\equiv \|a_n x_n + b_n S x_n + c_n T x_n - q\|^2 \\ &= \|a_n (x_n - q) + b_n (S x_n - q) + c_n (T x_n - q)\|^2 \\ &= a_n \|x_n - q\|^2 + b_n \|S x_n - q\|^2 + c_n \|T x_n - q\|^2 \\ &- a_n b_n \|x_n - S x_n\|^2 - b_n c_n \|S x_n - T x_n\|^2 - c_n a_n \|T x_n - x_n\|^2 \end{aligned}$$

$$&\leq a_n \|x_n - q\|^2 + b_n \|x_n - q\|^2 + c_n \|x_n - q\|^2 \\ &- a_n b_n \|x_n - S x_n\|^2 - b_n c_n \|S x_n - T x_n\|^2 - c_n a_n \|T x_n - x_n\|^2 \end{aligned}$$

$$&= \|x_n - q\|^2 \\ &- a_n b_n \|x_n - S x_n\|^2 - b_n c_n \|S x_n - T x_n\|^2 - c_n a_n \|T x_n - x_n\|^2 .\end{aligned}$$

Therefore, we obtain (3.1).

Since $\{\|x_n - q\|\}$ is convergent and it is assumed that $0 < \alpha \leq a_n, b_n, c_n, d_n \leq \beta < 1$ for all $n \in \mathbb{N}$, we obtain from (3.1) that

(3.2)
$$x_n - Sx_n \to 0 \text{ and } Tx_n - x_n \to 0.$$

Our aim is to show that $x_n \to \overline{x} (\equiv \lim_{n \to \infty} P_F x_n)$. Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$. Since $\{x_{n_i}\}$ is bounded, there exists a subsequence $\{x_{n_j}\}$ of $\{x_{n_i}\}$ and $u \in H$ such that $x_{n_j} \to u$. Since the mapping S and T are nonexpansive, we have from (3.2) and Lemma 2.3 that $u \in F(S) \cap F(T)$.

We prove that u (= the weak limit of $\{x_{n_j}\}) = \overline{x} (\equiv \lim_{n \to \infty} P_F x_n)$. Since $u \in F(S) \cap F(T)$, it holds from (2.2) that

$$\langle x_n - P_F x_n, P_F x_n - u \rangle \ge 0$$

for all $n \in \mathbb{N}$. Therefore,

$$\langle x_n - P_F x_n, P_F x_n - \overline{x} + \overline{x} - u \rangle \ge 0.$$

By using Schwarz's inequality, we have that

(3.3)
$$\langle x_n - P_F x_n, u - \overline{x} \rangle \leq \langle x_n - P_F x_n, P_F x_n - \overline{x} \rangle$$

 $\leq \|x_n - P_F x_n\| \|P_F x_n - \overline{x}\|.$

Since the sequence $\{x_n\}$ is bounded and P_F is nonexpansive, $\{P_F x_n\}$ is also bounded. Indeed, it holds that

$$||P_F x_n - q|| \le ||P_F x_n - P_F q|| \le ||x_n - q||$$

for any $q \in F(S) \cap F(T)$ and $n \in \mathbb{N}$. This means that $\{P_F x_n\}$ is bounded since $\{x_n\}$ is bounded. Define $L \equiv \sup_{n \in \mathbb{N}} ||x_n - P_F x_n||$. Then, L is a real number. From (3.3), we have that

$$\langle x_n - P_F x_n, u - \overline{x} \rangle \le L \| P_F x_n - \overline{x} \|$$

for all $n \in \mathbb{N}$. Thus,

$$\langle x_{n_j} - P_F x_{n_j}, u - \overline{x} \rangle \le L \left\| P_F x_{n_j} - \overline{x} \right\|$$

for all $j \in \mathbb{N}$. Since $x_{n_j} \to u$ and $P_F x_n \to \overline{x}$, we obtain $\langle u - \overline{x}, u - \overline{x} \rangle \leq 0$, which means that $u = \overline{x}$. From (C) in Section 2, we have that $x_n \to \overline{x}$. This completes the proof.

Let $T = S^2$ in Theorem 3.1. Since T is nonexpansive and $F(S) \cap F(T) = F(S) \cap F(S^2) = F(S)$, we obtain the following corollary:

Corollary 3.1. Let C be a nonempty, closed and convex subset of H, and let S be nonexpansive mappings from C into itself. Suppose that F(S) is nonempty. Let $\alpha, \beta \in (0,1)$ such that $\alpha \leq \beta$, and let $\{a_n\}, \{b_n\}$, and $\{c_n\}$ be sequences of real numbers in (0,1) such that $a_n + b_n + c_n = 1$ and $0 < \alpha \leq a_n, b_n, c_n \leq \beta < 1$ for all $n \in \mathbb{N}$. Define a sequence $\{x_n\}$ in C as follows:

(3.4)
$$x_{n+1} = a_n x_n + b_n S x_n + c_n S^2 x_n \text{ for all } n \in \mathbb{N},$$

where $x_1 \in C$ is given. Then, the sequence $\{x_n\}$ converges weakly to a fixed point $\hat{x} \equiv \lim_{n \to \infty} P_F x_n \in F(S)$, where P_F is the metric projection from H onto F(S).

Similarly, (3.4) can be replaced by

$$x_{n+1} = a_n x_n + b_n S x_n + c_n S^k x_n$$
, where $k \in \mathbb{N} \cup \{0\}$.

ATSUMASA KONDO

4. Strong Convergence

This section presents a strong convergence theorem, which is a simple version of that of Kondo and Takahashi [6].

Theorem 4.1 ([6]). Let C be a nonempty, closed and convex subset of H, and let S and T be nonexpansive mappings from C into itself such that $F(S) \cap F(T) \neq \emptyset$. Let $\alpha, \beta \in (0, 1)$ such that $\alpha \leq \beta$, and let $\{\lambda_n\}, \{a_n\}, \{b_n\}, and \{c_n\}$ be sequences of real numbers in (0, 1) such that

$$\lambda_n \to 0, \quad \sum_{n=1}^{\infty} \lambda_n = \infty,$$

 $a_n + b_n + c_n = 1$, $0 < \alpha \le a_n, b_n, c_n \le \beta < 1$ for all $n \in \mathbb{N}$.

Define a sequence $\{x_n\}$ in C as follows:

$$x_{n+1} = \lambda_n x + (1 - \lambda_n) \left(a_n x_n + b_n S x_n + c_n T x_n \right) \in C \text{ for all } n \in \mathbb{N},$$

where $x_1 = x \in C$ is given. Then, the sequence $\{x_n\}$ converges strongly to a common fixed point $\overline{x} \equiv P_F x \in F(S) \cap F(T)$, where P_F is the metric projection from H onto $F(S) \cap F(T)$.

As a corollary, we obtain a method to approximate strongly to fixed points of a nonexpansive mapping, which is an alternative method to Halpern's type iteration (1.2).

Corollary 4.1. Let C be a nonempty, closed and convex subset of H, and let S be a nonexpansive mapping from C into itself such that $F(S) \neq \emptyset$. Let $\alpha, \beta \in (0,1)$ such that $\alpha \leq \beta$, and let $\{\lambda_n\}, \{a_n\}, \{b_n\}, and \{c_n\}$ be sequences of real numbers in (0,1) such that

$$\lambda_n \to 0, \quad \sum_{n=1}^{\infty} \lambda_n = \infty,$$

 $a_n + b_n + c_n = 1$, $0 < \alpha \le a_n, b_n, c_n \le \beta < 1$ for all $n \in \mathbb{N}$.

Define a sequence $\{x_n\}$ in C as follows:

(4.1) $x_{n+1} = \lambda_n x + (1 - \lambda_n) \left(a_n x_n + b_n S x_n + c_n S^2 x_n \right) \in C$ for all $n \in \mathbb{N}$,

where $x_1 = x \in C$ is given. Then, the sequence $\{x_n\}$ converges strongly to a fixed point $\hat{x} \equiv P_F x \in F(S)$, where P_F is the metric projection from Honto F(S).

As Corollary 3.1, (4.1) can be replaced by

$$x_{n+1} = \lambda_n x + (1 - \lambda_n) \left(a_n x_n + b_n S x_n + c_n S^k x_n \right), \text{ where } k \in \mathbb{N} \cup \{0\}.$$

Acknowledgements. The author was partially supported by the Ryousui Gakujutsu Foundation of Shiga University.

References

- [1] S. Atsushiba and W. Takahashi, Approximating common fixed points of two nonexpansive mappings in Banach spaces, Bull. Austral. Math. Soc. 57 (1998), 117-127.
- [2] B. Halpern, Fixed points of nonexpanding maps, Bull. Amer. Math. Soc. 73 (1967), 957-961.
- [3] M. Hojo, Attractive point and mean convergence theorems for normally generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal. 18 (2017), 2209–2120.
- [4] S. Iemoto and W. Takahashi, Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space, Nonlinear Anal. 71 (2009), 2082-2089.
- [5] P. Kocourek, W. Takahashi, J. C. Yao, Fixed point theorems and weak convergence theorems for generalized hybrid mappings in Hilbert Spaces, Taiwanese J. Math. 14 (2010), 2497-2511.
- [6] A. Kondo and W. Takahashi, Approximation of a Common Attractive Point of Noncommutative Normally 2-Generalized Hybrid Mappings in Hilbert Spaces, Linear Nonlinear Anal., 5 (2019), 279-297.
- [7] P.-L. Lions, Approximation de points fixes de contractions, C. R. Acad. Sci. Paris Sér. A-B 284 (1977), 1357-1359.
- [8] W. R. Mann, Mean value methods in iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- [9] T. Maruyama, W. Takahashi and M. Yao, Fixed point and mean ergodic theorems for new nonlinear mappings in Hilbert spaces, J. Nonlinear Convex Anal. 12 (2011), 185-197.
- S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 274–276.
- [11] T. Shimizu and W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997), 71-83.
- [12] W. Takahashi, Nonlinear Functional Analysis. Fixed Point Theory and its Applications, Yokohama Publishes, Yokohama, (2000).
- [13] W. Takahashi, Introduction to Nonlinear and Convex Analysis, Yokohama Publishes, Yokohama, (2009).
- [14] W. Takahashi, Weak and strong convergence theorems for noncommutative two generalized hybrid mappings in Hilbert spaces, J. Nonlinear Convex Anal., 19 (2018), 867-880.
- [15] W. Takahashi and M. Toyoda, Weak convergence theorems for nonexpansive mappings and monotone mappings, J. Optim. Theory Appl., 118 (2003), 417–428.
- [16] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992), 486-491.

(Atsumasa Kondo) DEPARTMENT OF ECONOMICS, SHIGA UNIVERSITY, BANBA 1-1-1, HIKONE, SHIGA 522-0069, JAPAN

E-mail address: a-kondo@biwako.shiga-u.ac.jp