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ABSTRACT. In this article, we present methods for finding common fixed
points of nonexpansive mappings. First, Mann type weak convergence
theorems are proved. As a corollary, we obtain an alternative method
to Mann’s type iteration for finding a fixed point of a nonexpansive
mapping. Also, a strong convergence theorem of Halpern type iterations
is presented. The results base on those of Kondo and Takahashi [6].

1. INTRODUCTION

Let H be a real Hilbert space, let C be a nonempty subset of H, and
let S be a mapping from C into H. The set of fixed points of S is denoted
by F(S) ={zxe€C:Sx=x}. A mapping S:C — H is called nonexpan-
sive if ||Sx — Sy|| < ||z — y|| for all z,y € C. For nonexpansive mappings,
many approximation methods for finding fixed points have been intensively
studied. The problem is as follows:

Find an element € F (S).
The following iteration is called Mann’s type [8]:
(L.1) Tnt1 = M\Zn + (L= Ay) Sz, for all n € N,

where 21 € C'is given. In (1.1), N is the set of natural numbers, and {\,} is
a sequence of real numbers in the interval [0, 1]. It is known that under the
iteration scheme (1.1), the sequence {x,} converges weakly to a fixed point
of S; see, for example, Reich [10] and Takahashi [13]. The next iteration is
called Halpern’s type [2]:

(1.2) Tl = M2 + (1 = Ap) Sz, for all n € N,

where z1 = x € C'is given. Under the iteration scheme (1.2), {z,} converges
strongly to a fixed point of S; see, for example, Wittmann [16].
For two mappings S and 7', consider a problem as

Find an element T € F (S)NF (1),
which is called a common fixed point problem. There are many studies for

finding common fixed points of nonlinear mappings; see, for example, Lions
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[7], Shimizu and Takahashi [11], Atsushiba and Takahashi [1], Iemoto and
Takahashi [4], Takahashi [14], and Kondo and Takahashi [6].

In this short article, we present methods for finding common fixed points
of two nonexpansive mappings. The results base on those of Kondo and
Takahashi [6]. First, Mann type weak convergence theorems are obtained
(Theorems 3.1). As a corollary, we obtain an alternative method to Mann’s
type iteration (1.1) for finding a fixed point of a nonexpansive mapping.
Strong convergence theorem of Halpern type iterations is also presented
(Theorems 4.1 and Corollary 4.1).

2. PRELIMINARIES

This section provides background information and results. Let H be a
real Hilbert space with inner product (-, -) and norm ||-||. For four elements
x,y,z,w € H, it holds that

1) 2(@—y, z—w) =z —w|* +ly - 2> = |z — 2|° = ly — w|*.
We can easily prove the equation (2.1) as follows:
lz = wl? + lly = 2|* = & = 2[I* = |y — w||?
= lal® = 2 (@, w) +[[wl* + [yl =2y, 2) + 2]
= (2> = 2@, )+ 1217) = (ol = 24y, w)+ Jlw]?)
—2(z, w) —2(y, 2)+2(z, 2) +2(y, w)
= —2(x, w—2)—2(y, z—w)

2(z, z—w) —2(y,z —w)
2(x—y, z—w).

The strong and weak convergence of a sequence {z,} in H to an element
x (€ H) are denoted by z,, — = and z,, — x, respectively. Regarding weak
and strong convergence, the following are well-known:

(A) a closed and convex subset of a real Hilbert space is weakly closed,
that is, {z,} C C and z,, — u = u € C

(B) if , — z and y, — y, then (z,, y,) — (z, y); see Problem 5.4.1 in
Takahashi [13].

(C) zp, — T if and only if for any subsequence {zn,} of {z,}, there exists
a subsequence {xnj} of {xy, } such that z,, — 7.

Let C be a nonempty, closed and convex subset of H. If a mapping
S : C' — H is nonexpansive, F'(5) is closed and convex in C. A mapping S :
C — H with F (S) # 0 is called quasi-nonexpansive if ||Sz — u|| < ||z — ul|
for all z € C' and u € F(S5). It is easily ascertained that a nonexpansive
mapping with F (S) # () is quasi-nonexpansive.

Let F' be a nonempty, closed, and convex subset of H. For any z € H,
there exists a unique nearest point p € F, that is, ||z — p|| = infyep ||z — v||.
This correspondence is called a metric projection from H onto F, and is
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denoted by Pp. For the metric projection Pr from H onto F', it holds that
(2.2) (x — Ppx, Prz—u) >0
for all € H and u € F. For more details, see Takahashi [12] and [13].

For existence of a common fixed point, we know the following theorem

that guarantees the existence of a common fixed point of commutative non-
expansive mappings; For its proof, see, for example, Hojo [3].

Theorem 2.1. Let C' be a nonempty, closed and convex subset of H, and
let S and T be nonexpansive mappings of C into itself such that ST =T'S.
Suppose that there exists an element z € C such that {S*T'z : k,1 € N} is
bounded. Then, F (S)NF (T) is nonempty.

From Theorem 2.1, we know a set of sufficient conditions for the existence
of a common fixed point of nonexpansive mappings. In the main theorems
of this article, we assume the existence. The following lemma will be used
in the proof of a main theorem. For completeness, we present a proof for
each lemma.

Lemma 2.1 ([15]). Let F be a nonempty, closed, and convex subset of H,
let Pp be the metric projection from H onto F, and let {x,} be a sequence
in H. If

(2-3) | Tni1 — QH < lzn — q||
for all ¢ € F and n € N, then {Prxzy} is convergent in F.

Proof. Since H is complete and F' is closed in H, it holds that F is complete.
Thus, it suffices to show that {Ppx,} is a Cauchy sequence in F. Let
m,n € N such that m > n. Since Ppx,, € F, we have from (2.2) that

2(xm — Ppam, Prtm — Pra,) > 0.
By using (2.1), we obtain
l2m — Pan”2 — ||z — PFZCmH2 — [ Pram — Pan”2 > 0.
Since m > n, it follows from the assumption (2.3) that
(24) |m — PFZCmH2 + | Pram — Pan”2 < lzm - PFZCn”2
< len — PFfEn||2~
Since || Ppiy, — Prag||* > 0, we have from (2.4) that
|2 — Prm|? < |2 — Praa|®
for all m,n € N such that m > n. This means that < |z, — prn||2} is
monotone decreasing, and thus, it is convergent. It holds from (2.4) that
| Pram — PFZCn”2 <lzn — PFZCn”2 — ||lzm — PFIm”Q-

Since the right-hand side converges to 0 as m,n — oo, we have that Ppx,, —
Prxzyp — 0. Thus, {Ppxy,} is a Cauchy sequence. This completes the proof.
O
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Lemma 2.2 ([9]). Let z,y,z € H, and let a,b,c € R such that a+b+c =1,
where R stands for the set of real numbers. Then,

llaz + by + cz|?

= alzl” +blly|* + cll=l* — abllz — y|* = belly — 21 = callz — z|*.
Proof. By easy calculations, we have the following:

laz + by +cz||*> = (az+by+ cz, ax + by + c2)
= d®||z|* + ab(z, y) +ac(z, 2)
+ba {y, x) + 0% [lyl|* + be(y, =)
+ea (z, @) +cb (2, y) + e[|z
= &)+ 6y + )21
+2ab (z, y) + 2bc(y, z) + 2ca(z, x).
Using the relationship 2 (u, v) = ||lul|* + ||v||* = [Ju — v||*, we have that

l|az + by + cz||?
= & |lz]* + 0 |y)1* + ¢ ||
+ab ([l + lyll” = llz = yI1”) + e (Ilyll> + 1121 = ly = =)
+ea (l121? + ll2)* = |12 — =)
= a(a+b+c)|z]P+b(a+b+c)|yl*+cla+b+c) |z
—ab |z —y||* = belly — 2|° = callz — z|?
Since a + b+ ¢ = 1, we obtain the desired result. O

Letting ¢ = 0 in Lemma 2.2, we obtain
(2.5) lax + by|* = all* + b ly|* — ab |z — y||*,

where a + b = 1. For the equation (2.5), see Theorem 6.1.2 in Takahashi
[13]. Substituting @ = b = 1/2 into (2.5), we have the parallelogram law
lz+yl? + |z —yl|* = 2||z|* + 2||y||>. Therefore, Lemma 2.2 and (2.5)
are generalization of the parallelogram law. It is known that more general
equalities than Lemma 2.2 hold; see [6].

The next lemma is also mentioned in Takahashi [13] as Problem 6.2.3.
The proof has been developed by many existing studies; see, for example,
Kocourek et al. [5].

Lemma 2.3. Let C be a nonempty, closed and convex subset of H, and let
S be a nonexpansive mapping from C into H. Let {x,} be a sequence in C
such that x, — Sty — 0 and x, — u. Then, u € F (S).

Proof. First, note that since C' is closed and convex, it holds from (A) in
Section 2 that it is weakly closed. Since {z,} C C and x, — u, we have
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that v € C. Since S is a mapping from C into H, there exists an element
Su of H. We prove that Su = u. Since S is nonexpansive, it holds that

1525 — Sull* < [l — ul®
for all n € N. Then, we have that
Sz — Tn + Zn — SU”2 < |lzn — U”2 )
and hence,
1S — Zn||* 4 2 (Sn — T, 2n — SU) + |20 — Sul|* < |20 — ul)?.

Similarly, we have

| Sy — scn||2 +2(Szy — xp, Ty — Su)
+ |ln — ul® + 2 (wn — uy, u— Su) + [u— Sull® < [lag, — ul|®.
We obtain
1520 — 20|[* +2 (Sn — Tny Tn — Su)+2 (2 — u, u— Su)+|lu— Sul®> <O0.

Since xn, — Sz, — 0 and z, — wu, we have from (B) in Section 2 that
(Szp — xpy, xp — Su) — (0, u—Su) = 0. Thus, it holds in the limit as
n — oo that |ju — Su|? < 0, which implies that u = Su. O

To use Lemma 2.3, crucial steps we need to show are as follows: (a) a
sequence {z,} (C C) is bounded; and (b) z, — Sz, — 0. Once (a) and (b)
are demonstrated, we can conclude from (a) that there exists a subsequence
{zn,} of {z5,} and uw € H such that x,, — w. Then, we have from (b) and
Lemma 2.3 that u = Swu.

3. WEAK CONVERGENCE

In this section, we prove a weak convergence theorem, which is a simple
version of that of Kondo and Takahashi [6]. As a corollary, we obtain a
method to approximate weakly to fixed points of a nonexpansive mapping,
which is an alternative to the iteration scheme (1.1).

Theorem 3.1 ([6]). Let C' be a nonempty, closed and convex subset of H,
and let S and T be nonexpansive mappings from C into itself. Suppose
that F (S) N F(T) is nonempty. Let o, B € (0,1) such that o < (3, and
let {an}, {bn}, and {cn} be sequences of real numbers in (0,1) such that
n+by+cn=1and 0 < a < an,bn,cn < B <1 for alln € N. Define a
sequence {xyn} in C as follows:

Tptl = ATy + bpSxy + 1Ty, for alln € N,

where 1 € C is given. Then, the sequence {x,} converges weakly to a
common fixed point T = limy, o Prx, € F(S)N F(T), where Pr is the
metric projection from H onto F (S)NF (T).

Note that when sequences {a, }, {b,}, and {c, } are constant coefficients of
a convex combination, the required conditions on the sequences are satisfied.
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Proof. First, let us verify that there exists the metric projection Pp from H
onto F'(S)N F(T). Since S and T be nonexpansive, F'(S) and F (T) are
closed and convex subsets of C. Thus, the intersection F' (S)NF (T') is also
closed and convex in C. Since F (S)N F(T) # () is assumed, there exists
the metric projection P from H onto F (S)N F (T).

Next, we show that a sequence {|z, — ¢||} is monotone decreasing for all
qg € F(S)N F(T). Indeed, since a, + b, + ¢, = 1, S and T are quasi-
nonexpansive and ¢ € F (S) N F (1), we obtain

”xn—l—l - Q|| = ”anxn +bp Sy + e Ty — QH

lanzy, + bp Sty + cnTxyn — (an + by + ¢n) ql|
”an (xn - Q) + bn (an - Q) + Cn (T$n - Q)H
an ||@n — ql| + b [|Szn — ql| + cn | Tzn — 4
an ||Zn = qll + bn |z — qll + cn [lzn — g
[0 — g
for all n € N. This means that {||z, —¢||} is monotone decreasing for
all ¢ € F(S)N F(T). As consequences, we obtain the following: (i) The
sequence {||x, — q||} is convergent in R for all ¢ € F (S)N F (T). (ii) From
Lemma 2.1, {Prxz,} is convergent in F' (S) N F (1). We denote the limit
by Z, that is, T = lim,,_,cc Prxy. (iii) The sequence {z,} is bounded since
{l|zn, — ql||} is convergent.

The following inequality is necessary to complete the proof:

(3.1) anbn |0 — S2p||* + bpcn |50 — Tn||® + cnan | Tx, — 24|
2 2
< len = gll” = llzngs —qll

for any ¢ € F(S)NF (T) and n € N. Indeed, since a,+ by, + ¢, = 1, it holds
from Lemma 2.2 that

INIA

Zni1 — gl®

|an®n + bp Sty + el — g

lan (20 — @) + bn (S — @) + e (T2 — @)
= ap|lvn — QH2 + b | Sz, — (]”2 +cn [ Tzn — QH2

—anbp |20 — St ||? — bpcn |Szn — Tan||* — cpan | Tzn — z,|?

an, || Tn — QH2 + by, ”xn - QH2 +cn ”xn - Q||2

IN

—anby, || — Szn|* = bucn ||Stn — Tan||* = cnan | Tan — 0|
= ||37'n - q”2
—anby, || — S:cn||2 — bpcy || ST — Txn||2 — cpan || Txy — InHQ .

Therefore, we obtain (3.1).
Since {||x,, — ¢||} is convergent and it is assumed that 0 < o < ay,, by, ¢n, dy, <
B < 1 for all n € N, we obtain from (3.1) that

(3.2) Tp — Sz, — 0 and Tz, — z, — 0.
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Our aim is to show that x,, — T (= limy,—00 Pray). Let {x,,} be a sub-
sequence of {x,}. Since {2, } is bounded, there exists a subsequence {x, }
of {zn,} and u € H such that z,; — u. Since the mapping S and T" are
nonexpansive, we have from (3.2) and Lemma 2.3 that v € F'(S) N F (T).

We prove that u (= the weak limit of {y,}) =T (= limp—oo Pray). Since
ue F(S)NF(T), it holds from (2.2) that

(n, — Prpy, Przy, —u) >0
for all n € N. Therefore,
(x, — P2y, Ppxy, —T+T—u) > 0.
By using Schwarz’s inequality, we have that
(3.3) (xy, — Ppxy, u—7) < (xn, — Ppxyn, Ppx, —T)
< lwn — Praoll || Pren — |
Since the sequence {z} is bounded and Pr is nonexpansive, { Ppxy, } is also
bounded. Indeed, it holds that
|1Pran — gl < | Pran — Prqll < [|lzn — gl
for any ¢ € F(S)N F(T) and n € N. This means that {Prz,} is bounded
since {zy} is bounded. Define L = sup,,cy |2, — Pry|. Then, L is a real
number. From (3.3), we have that
(xn, — Ppy, u—7) < L||Ppxy, —T|
for all n € N. Thus,
(Tn; = Ppin;, u—T) < L”PF"E’% _E”

for all j € N. Since x,,; — v and Ppz, — T, we obtain (u — 7, u—7) <0,
which means that v = 7. From (C) in Section 2, we have that z,, — Z. This
completes the proof.

Let T = S? in Theorem 3.1. Since 7' is nonexpansive and F (S)NF (T) =
F(S)NF (S?) = F(S), we obtain the following corollary:

Corollary 3.1. Let C' be a nonempty, closed and convex subset of H, and
let S be nonexpansive mappings from C' into itself. Suppose that F (S) is
nonempty. Let o, € (0,1) such that o« < B, and let {an}, {bn}, and
{cn} be sequences of real numbers in (0,1) such that an + by, + ¢, = 1 and
0<a<apbyc, <B <1 foralln € N. Define a sequence {xy} in C as
follows:

(3.4) Tnel = AnTp + bp STy + 8%, for alln €N,

where x1 € C' is given. Then, the sequence {x,} converges weakly to a fized
point T = limy, o0 Ppxy, € F (S), where Pr is the metric projection from H
onto F (S5).

Similarly, (3.4) can be replaced by
Tptl = Qnxn + bnSxy + CnSk:En, where k € NU{0}.
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4. STRONG CONVERGENCE

This section presents a strong convergence theorem, which is a simple
version of that of Kondo and Takahashi [6].

Theorem 4.1 ([6]). Let C' be a nonempty, closed and convex subset of H,
and let S and T be nonexpansive mappings from C into itself such that
FS)NF(T)#0. Let o, 8 € (0,1) such that o < 3, and let {\,}, {an},
{bn}, and {c,} be sequences of real numbers in (0,1) such that

o0
A — 0, ZAn = 00,
n=1

n+bpt+cen=1, 0<a<apbp,c, <P <1 forallneN.
Define a sequence {xy} in C as follows:
Trt1 = A + (1 = A\p) (anzn + b, Sz + ¢ Txy) € C for alln € N,

where x1 = x € C is given. Then, the sequence {x,} converges strongly to
a common fized point T = Prpx € F(S) N F (1), where Pp is the metric
projection from H onto F (S)N F (T).

As a corollary, we obtain a method to approximate strongly to fixed points
of a nonexpansive mapping, which is an alternative method to Halpern’s type
iteration (1.2).

Corollary 4.1. Let C be a nonempty, closed and convex subset of H, and
let S be a nonexpansive mapping from C into itself such that F (S) # 0.
Let o, 3 € (0,1) such that « < B3, and let {\,}, {an}, {bn}, and {c,} be
sequences of real numbers in (0,1) such that

o0
Ao =0, D Ay =00,
n=1

n+bpt+cen=1, 0<a<apbp,c, <P <1 foralneN.
Define a sequence {x,,} in C as follows:
(4.1) zpr1 =Mz + (1= \p) (ana:n + b Sty + cnSQ:::n) e C forallm €N,

where x1 = x € C' is given. Then, the sequence {x,} converges strongly to
a fivred point ¥ = Ppx € F (S), where Pp is the metric projection from H
onto F (S5).

As Corollary 3.1, (4.1) can be replaced by

Tpt1 =z + (1 — Ay) (anazn + b, Sz, + cnSkmn> , where k € NU{0} .
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