FIXED POINT PROBLEMS IN CAT(1) SPACES

FUMIAKI KOHSAKA

ABSTRACT. We state existence and convergence theorems for finding fixed
points of spherically nonspreading mappings in CAT(1) spaces. These results
can be applied to convex optimization in such spaces.

1. INTRODUCTION

The concepts of spherically nonspreading mappings and firmly spherically non-
spreading mappings in CAT(1) spaces were originally obtained in [14]. The use of
tangent sine perturbation for convex minimization problems made it possible for
them to propose firmly spherically nonspreading resolvents of convex functions in
such spaces.

As is well understood, convex minimization problems in Hilbert spaces is deeply
related to fixed point problems for firmly nonexpansive mappings. In fact, if H is
a real Hilbert space and f: H — (—00, 0] is a proper lower semicontinuous convex
function, then the resolvent J; of f defined by

. 1
g = avgnin { 10) + o — 17}
yeEH

for all z € H is a well defined and single valued firmly nonexpansive mapping of H
into itself, i.e.,
1 Tpe = Tpyl|* < (Jpw = Jyy,x —y)
for all x,y € H or equivalently
1Tz = Tyl < [|ha + (1 = A) gz — (Ay + (1= A)Jpy) |

for all z,y € H and A € [0,1]. It is also known that the fixed point set F(Jy)
coincides with the set argming f of minimizers of f; see, for instance, [4,25].

In 1990s, Jost [13] and Mayer [22] independently extended the notion of resol-
vents of convex functions in Hilbert spaces to more general complete CAT(0) spaces.
In this case, the resolvent J; of a proper lower semicontinuous convex function f
of a complete CAT(0) space X into (—o0, 00| is defined by

1
Jyx = argmin {f(y) + —d(y,x)Q}
yeH 2
for all x € X. It is also known that J; is firmly nonexpansive, i.e.,
d(Jrx, Jry) < d()\$ ®1 =Nz, Ay (1— /\)ny)
for all z,y € X and X € [0,1] and F(Js) = argminy f; see [1,3].
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Our main interest here is on convex minimization problems in more general
complete CAT(1) spaces. Since the geometric properties of such spaces are quite
different from those in complete CAT(0) spaces, we need to discuss a suitable way
to perturb convex functions in such spaces when such problems are to be solved.
Considering these differences, we define a concept of resolvent of convex functions
by using tangent sine perturbations.

Let (X,d) be a complete CAT(1) space such that

0
d(v,0") < =
(') <7
for all v,v" € X and f: X — (—o00,00] a proper lower semicontinuous convex
function. Then the mapping R; given by
Ryx = argmin { f(y) + tand(y, ) sind(y, =)}
yeX

for all x € X is a well defined and single valued mapping of X into itself. It also
holds that

F(Ry) = argmin f
X
and R is firmly spherically nonspreading in the sense of [14], i.e.,
(cosd(Ryz,z) + cosd(Ryy,y)) cos® d(Rx, Ryy) > 2cosd(Ryx,y) cosd(Ryy, )

for all z,y € X.

In this paper, we study the problem of finding fixed points of spherically non-
spreading mappings and firmly spherically nonspreading mappings in complete
CAT(1) spaces. We also study some basic properties of quasiconvex functions and
convex functions in such spaces. Applications to the problem of finding minimizers
of proper lower semicontinuous convex functions in the spaces are also included.
The results we state here were originally obtained by Kimura and Kohsaka [14].

2. PRELIMINARIES

We denote by R and N the sets of real numbers and positive integers, respectively.
The convergence of a sequence {z,} in a metric space (X, d) is denoted by z,, — x.
The fixed point set F(T') of a mapping T" of a nonempty set X into itself is defined
by

FT)={zre X : Tz =z}

We denote by argminy f or argmin, ¢y f(y) the set of minimizers of a function f
of a nonempty set X into (—o0, c0] defined by

argmin f = {z € X : f(z) = inf f(X)}.
X

If (X,d) is a metric space, then the diameter of X and the closed ball at a center
p with a radius r > 0 are denoted by diam(X) and B, [p], respectively.

Let {z,} be a sequence in a metric space (X,d). Then the asymptotic center
A({z,}) of {z,,} is defined by

A({z,}) = {u € X :limsupd(u,z,) = in)f( lim sup d(y,xn)} .
n S n
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It is obvious that A({z,}) = X for every unbounded sequence {,} in X. Thus if
A({z,}) = {p} for some p € X, then {z,,} is bounded. The sequence {z,} is also
said to be A-convergent to p € X if

A({zn,}) = {p}
for each subsequence {z,,} of {z,}.

Let RY be the N-dimensional Euclidean space with inner product (-, -) and
induced norm |-| for N € N. Let H be a real Hilbert space with inner product
(-, -) and induced norm || - [|. The unit sphere Sy of H is a complete metric space
with the spherical metric dg,, defined by

ds,, (u,v) = arccos (u, v)
for all u,v € Sy. This space is called a Hilbert sphere. Since
2
= vl* = 2(1 — (u,v))

for all u,v € Sy, a sequence {x,} in Sy converges to p € Sy with respect to dg,,
if and only if it converges to p in norm. Thus the metric topology on (S’H, dsH)
coincides with the relative topology on Spy induced by the norm topology on H.
We denote by (S?,ds:) the Hilbert sphere of R?.

Let (X,d) be a metric space. It is said to be uniquely w-geodesic if for each
xz,y € X with d(z,y) < 7, there exists a unique mapping ~ of [0,[] into X such
that

10) ==z, () =y, and d(y(s),7(t)) = |s —t|
for all s,t € [0,1], where [ = d(z,y). The mapping ~ is called a geodesic path from
x to y. In this case, we can define a convex combination of x and y by

(1 =Nz ® Ay =~(N)
for all A € [0,1]. It is well known that a Hilbert sphere (Sg,ds,) is uniquely
m-geodesic. The unique geodesic v from z to y is given by
~(t) = (cost)z + (sint)u
for all z,y € Sy with 0 < dg,, (z,y) < w, where
_ y-@yz
u= "

ly — (z,y) =]
A subset C of a uniquely m-geodesic metric space (X, d) such that d(v,v") < 7 for
all v,v’ € C is said to be convex if

l-a)rdayeC

whenever z,y € C' and « € [0, 1].
A uniquely 7-geodesic metric space (X, d) is called a CAT(1) space if

d((l —a)z®ay, (1 — L)z ﬂz) < dg2((1 —Q)Z®ay,(1-0)T® [32)
whenever a, 3 € [0,1], 2,9,z € X, Z,7, 2 € S?, and
d(z,y) = ds2(Z,7), d(y,z) =ds2(7,2), and d(z,2)=ds(Z,7).

Typical examples of complete CAT(1) spaces are nonempty closed convex subsets
of real Hilbert spaces, Hilbert spheres, complete R-trees, and complete CAT(0)
spaces. A CAT(1) space (X,d) is said to be admissible if

d(v,v') < =
(v,v)<2
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for all v,v" € X. A sequence {z,} in a CAT(1) space (X, d) is said to be spherically
bounded if

inf lim sup d(y, <
Jnf lim sup (y, )

We know the following fundamental result.

Theorem 2.1 ([10, Proposition 4.1, Corollary 4.4]). If {z,} is a spherically bounded
sequence in a complete CAT (1) space (X,d), then A({zn}) consists of one point
and {x,} has a A-convergent subsequence.

NN

3. SPHERICALLY NONSPREADING MAPPINGS

Let (X,d) be an admissible CAT(1) space and T: X — X a mapping. The
mapping 7T is said to be firmly spherically nonspreading if

(cosd(Tx,x) + cos d(Ty, y)) cos®> d(Tx, Ty) > 2cosd(Tz,y) cos d(Ty, )
for all x,y € X. It is also said to be spherically nonspreading if
cos? d(Tx, Ty) > cosd(Tx,y) cos d(Ty, x)
for all z,y € X. Since
2 > cosd(Tx,x) + cosd(Ty, y),

every firmly spherically nonspreading mapping is spherically nonspreading. If T
is spherically nonspreading and its fixed point set F(T') is nonempty, then T is
quasinonexpansive. In fact, if T" is a spherically nonspreading mapping with a fixed
point, z € X, and y € F(T), then we have

cos? d(Tx,y) > cosd(Tz,y) cosd(y, x).
Since X is admissible, we know that cosd(T'z,y) is positive and hence
cosd(Tz,y) > cosd(y, ).

Since d(Tx,y) and d(y, z) belong to [0,7/2), we obtain d(y, Tz) < d(y, x).
The following is a fixed point theorem for spherically nonspreading mapping.

Theorem 3.1 ([14, Theorem 5.2]). Let X be an admissible complete CAT(1) space
and T: X — X a spherically nonspreading mapping. Then F(T) is nonempty if
and only if there exists x € X such that

limsupd(Ty, T"z) < g
forallye X.

The following follows from [24, Lemma 11].

Lemma 3.2 ([24, Lemma 11]). Let A: Nx N — [0,00) be a bounded function such
that A(n,n) =0 for alln € N and

2A(m+1,n+1) < A(m+1,n)+ A(m,n+1)
for all m,n € N. Then lim,, A(n,n+ 1) = 0.

Using Lemma 3.2, we can prove the following A-convergence theorem for spher-
ically nonspreading mappings.
Theorem 3.3 ([14, Theorem 6.3]). Let X be an admissible complete CAT(1) space

and T: X — X a spherically nonspreading mapping such that F(T) is nonempty.
Suppose that
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(1) sup,, , d(T™z,T"x) < /2 for all x € X;
(2) limsup,, d(Ty,yn) < 7/2 whenever {y,} is a sequence in X and y, — y €
X.

Then {T™z} is A-convergent to an element of F(T) for all x € X.

We can also obtain the following A-convergence theorem for firmly spherically
nonspreading mappings.

Theorem 3.4 ([14, Theorem 6.5]). Let X be an admissible complete CAT(1) space
and T: X — X a firmly spherically nonspreading mapping such that F(T) is
nonempty. Suppose that

limsup d(Ty, yn) < g

whenever {y,} is a sequence in X and y, — y € X. Then {T"x} is A-convergent
to an element of F(T') for all x € X.

4. QUASICONVEX FUNCTIONS AND CONVEX FUNCTIONS

In this section, we apply our results to the problem of finding minimizers of
proper lower semicontinuous convex functions in CAT(1) spaces.

We first recall some basic notions related to this problem. Let (X,d) be an
admissible CAT(1) space and f: X — (—o00, 00| a function. The domain dom f of
f is defined by

domf={zreX: f(z) eR}
The function f is said to be
e proper if dom f is nonempty;
e lower semicontinuous if {z € X : f(x) < A} is closed for all A € R;
e A-lower semicontinuous if f(p) < liminf, f(z,) whenever {z,} is a se-
quence in X which is A-convergent to p € X;
e quasiconvex if

f(1 = a)z®ay) <max{f(z), f(y)}

for all z,y € X and a € (0,1);
e convex if

FA-a)z@ay) < (1-a)f(z)+af(y)
for all z,y € X and a € (0,1).
A point u € X is called a minimizer of f if f(u) = inf f(X).
We know the following lemmas in CAT(1) spaces.

Lemma 4.1 ([14, Lemma 3.1]). Let X be an admissible complete CAT(1) space
and f: X — (—00,00] a proper lower semicontinuous quasiconvex function. Then
f is A-lower semicontinuous.

Lemma 4.2 ([14, Lemma 3.2]). Let X be an admissible complete CAT(1) space,
f: X = (—00,00] a proper lower semicontinuous quasiconvex function, and p € X.
Suppose that f(x,) — oo whenever {x,} is a sequence in X such that d(p,x,) —
w/2. Then argminy f is nonempty. Further, if

(52 v) < maxts(o). 7))

whenever x,y € dom f and x # y, then argminy f is a singleton.
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Corollary 4.3 ([14, Corollary 3.3]). If X is a complete CAT(1) space such that
diam(X) < 7/2, then every proper lower semicontinuous quasiconvez function of
X into (—oo,00] has a minimizer.

Lemma 4.4 ([14, Lemma 3.4]). Let X be an admissible complete CAT(1) space,
K a nonempty closed convex subset of X, f: X — (—o00,00] a proper lower semi-
continuous quasiconvex function such that dom f N K is nonempty, and p € X.
Suppose that there exists ng € N such that x,, ¢ K for all integer n > ng whenever
{zn} is a sequence in X such that d(p,x,) — /2. Then there exists u € K such

that f(u) = inf f(K).

Corollary 4.5 ([14, Corollary 3.5]). Let X be an admissible complete CAT(1)
space, f: X — (—00,00] a proper lower semicontinuous quasiconvex function, p an
element of dom f, and r an element of [0,7/2). Then there exists u € B,[p] such

that f(u) = int f(B,[p)).

Theorem 4.6 ([14, Theorem 3.6]). FEvery proper lower semicontinuous convex
function of an admissible complete CAT(1) space into (—oo,00] is bounded below.

5. APPLICATIONS TO CONVEX MINIMIZAITON PROBLEMS

The following result is of fundamental importance in the definition of resolvents
of convex functions in CAT(1) spaces.

Theorem 5.1 ([14, Theorem 4.2]). Let X be an admissible complete CAT(1) space,
f: X — (—o00,00] a proper lower semicontinuous convex function, and x an element
of X. Then there exists a unique & € X such that

f(&) + tand(z, z) sind(&, z) = Ulg({f(y) + tand(y, z)sind(y, ) }.

‘We next define the concept of resolvent of a convex function with a tangent sine
perturbation.

Definition 5.2 ([14, Definition 4.3]). If X and f are the same as in Theorem 5.1,
then the resolvent Ry of f is defined by

Ryx = argmin{ f(y) + tand(y, ) sind(y, z) }
yeX
for all z € X.

Theorem 5.3 ([14, Theorem 4.6]). Let X be an admissible complete CAT(1) space,
f: X — (—o0,00] a proper lower semicontinuous convex function, and Ry the
resolvent of f. Then Ry: X — X is a single valued, well defined, and firmly
spherically nonspreading, and F(Ry) = argminy f.

Using Theorems 3.1, 3.4, and 5.3, we can obtain the following result.
Theorem 5.4 ([14, Theorem 7.1]). Let X be an admissible complete CAT(1) space,

f: X — (—o00,0] a proper lower semicontinuous convex function, and Ry the
resolvent of f. Then the following hold.

(1) argminy f is nonempty if and only if there exists x € X such that

T
limsup d(R " —
unnbup (Rpy, Rjr) < 5

forally € X;
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(2) if argminy f is nonempty and

limsup d(Rry, yn) <

0l

whenever {y,} is a sequence in X and y, — y € X, then {R}x} is A-
convergent to an element of argminy f for all x € X.

As a direct consequence of Theorem 5.4, we obtain the following corollary.

Corollary 5.5 ([14, Corollary 7.2]). Let X be a complete CAT(1) space such that
diam(X) < 7/2, f: X — (—00,00] a proper lower semicontinuous convex function,
and Ry the resolvent of f. Then argminy f is nonempty and {R’;x} is A-convergent
to an element of argminy f for all z € X.
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