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1 Introduction

This paper is a research announcement of the paper [15] in a 4D topology research project
(11, 12, 13, 14, 15, 16].

As general conventions throughout this paper, a compact connected oriented smooth
r-dimensional manifold for » > 2 is called an r-manifold and a smooth embedding and a
smooth isotopy from an r-manifold into an 7’-manifold are called an embedding and an
isotopy, respectively, unless otherwise stated. An m-punctured manifold of an r-manifold
X is an r-manifold X™© obtained from X by removing the interiors of m mutually
disjoint r-balls in the interior of X. The r-manifold X'© is denoted by X© where
choices of the 4-balls are independent of the diffeomorphism type of X.

By this convention, a homotopy 4-sphere is a 4-manifold M homotopy equivalent to
the 4-sphere S*, and a homotopy 4-ball is a 1-punctured manifold M©® of a homotopy
4-sphere M.

The main purpose of this paper is to show that every homotopy 4-sphere is diffeomor-
phic to the 4-sphere S*, so that every homotopy 4-ball is diffeomorphic to the 4-ball D?.
For a positive integer n, the stable 4-sphere of genus n is the connected sum 4-manifold

Y = Y(n) = S*#n(S? x S?) = ST S? x S2,

which is the union of an n-punctured manifold (5*)™®) of the 4-sphere S* and 1-punctured
manifolds (S? x S?)(© (i = 1,2,...,n) of the 2-sphere products S? x S? (i = 1,2,...,n)
pasting the boundary 3-spheres of (5*)"© to the boundary 3-spheres of (5% x S?)© (i =
1,2,...,n).

For this purpose, a concept of a trivial surface-knot in the 4-space in [11] is used by
observing that the stable 4-sphere ¥ of genus n is the double branched covering space
S4(F), of the 4-sphere S* branched along a trivial surface F' of genus n.

An orthogonal 2-sphere pair or simply an O2-sphere pair of the stable 4-sphere ¥ is a
pair (S, 5") of 2-spheres S and S” embedded in ¥ meeting transversely at a point with the
intersection numbers Int(S, S) = Int(S’, ") = 0 and Int(S, 5") = +1.

A pseudo-O2-sphere basis of the stable 4-sphere ¥ of genus n is the system (.S, S.)
of n mutually disjoint O2-sphere pairs (5;,5]) (i = 1,2,...,n) in 3. Let N(S;,S]) be
a regular neighborhood of the union S; U S! of the O2-sphere pair (5;,5!) in ¥ such
that N(S;,5!) (i = 1,2,...,n) are mutually disjoint and diffeomorphic to a 1-punctured
manifold (S? x S2)(® of the sphere product S? x S2. The region of a pseudo-O2-sphere



basis (S, S.) in 3 of genus n is a 4-manifold Q(S,, S,) in ¥ obtained from the 4-manifolds
N(S;,S]) (i = 1,2,...,n) by connecting them by mutually disjoint 1-handles h; (j =
1,2,...,n—1) in X. Since X is a simply connected 4-manifold, the region Q(S,, S,) in ¥
does not depend on any choices of the 1-handles h} (j =1,2,...,n— 1) and is uniquely
determined by the pseudo-O2-sphere basis (S, S.) up to isotopies of ¥ (see [9]). The
residual region

Q°(8,, 5,) = cl(Z\ Q(S,, 57))

of the region (S,, S.) in ¥ is always a homotopy 4-ball, which is shown by van Kampen
theorem and a homological argument. An O2-sphere basis of the stable 4-sphere Y of
genus n is a pseudo-O2-sphere basis (S, S,) of ¥ such that the residual region Q¢(S,, S%)
is diffeomorphic to the 4-ball. The following result is basically the main result.

Theorem 1.1. For any two pseudo-O2-sphere bases (R,, R,) and (S, S.) of the stable 4-
sphere ¥ of any genus n > 1, there is an orientation-preserving diffeomorphism h : ¥ — X
sending (R;, R}) to (S;,S]) for all i (i =1,2,...,n).

The stable 4-sphere ¥ of genus n admits an O2-sphere basis. If (R,, R.,) is an O2-sphere
basis of ¥ and (S, S.) is the image of (R,, R.) by an orientation-preserving diffeomor-
phism f : ¥ — 3. then (S, S.) is also an O2-sphere basis. Thus, the following corollary
is directly obtained from Theorem 1.1.

Corollary 1.2. Every pseudo-O2-sphere basis of the stable 4-sphere ¥ of any genus n > 1
is an O2-sphere basis of 3.

In this paper, an O2-handle pair (D x I, D' x I) on a trivial surface-knot F' in S* in [11]
is discussed (see Section 2 for an explanation). A system (D, x I, D) x I) of n mutually
disjoint O2-handle pairs (D; x I, D} x I)(i =1,2,...,n) on F of genus n in S* is called
an 02-handle basis of F'.

It is shown in Lemma 2.3 that the lift (S(D,), S(D.)) of the core system (D, D,) of
any O2-handle basis (D, x I, D, x I) of F to S*(F), = ¥ is an O2-sphere basis of .
Also, in Corollary 5.3, it is shown that every O2-sphere basis of X is isotopic to such an
O2-sphere basis (S(D.), S(D.)) in X.

The following result which is called 4D Smooth Poincaré Conjecture is a direct conse-
quence of Corollary 1.2.

Corollary 1.3. Any homotopy 4-sphere M is diffeomorphic to the 4-sphere S*.

In the topological category, it is well-known by Freedman [3] (see also [4]) that the
corresponding result of Corollary 1.3 holds (i.e., every topological 4-manifold homotopy
equivalent to the 4-sphere is homeomorphic to the 4-sphere). In the piecewise-linear
category, it can be shown by using the piecewise-linear versions of this argument (see
Hudson [10], Rourke-Sanderson [18]) that the corresponding result of Corollary 1.3 holds
(i.e., every piecewise-linear 4-manifold homotopy equivalent to the 4-sphere is piecewise-
linearly homeomorphic to the 4-sphere).



It is known by Wall in [19] that for every closed simply connected signature-zero spin 4-
manifold M with the second Betti number f5(M;Z) = 2m > 0, there is a diffeomorphism

K M#X(n) — X(m+n)

for a positive integer n and by Freedman [3] (see also [4]) that there is a homeomorphism
from W to ¥(m). However, a technique used for the proof of Theorem 1.1 cannot be
generalized to this case. In fact, it is known by Akhmedov-Park in [1] that there is
a closed simply connected signature-zero spin 4-manifold M with a large second Betti
number Sy (M;Z) = 2m such that M is not diffeomorphic to X(m). What can be said in
this paper is the following corollary.

Corollary 1.4. Let M and M’ be any closed (not necessarily simply connected) 4-
manifolds with the same second Betti number 85(M;Z) = B3(M’;Z). Then an embedding
u: M©® — M’ extends to a diffeomorphism u* : M — M’ if and only if the embedding
w: M© — M’ induces a fundamental group isomorphism

wy (MO, ) = m (M u(x)).

The following corollary is obtained by combining Corollary 1.3 with the triviality con-
dition of an S*-link in S* in [11, 12, 13].

Corollary 1.5. Every closed 4-manifold M such that the fundamental group (M, x) is
a free group of rank n and Hy(M;Z) = 0 is diffeomorphic to the connected sum 4-manifold

Shsn (St x §3) = Sipn St x SB,

The following corollary which is called 4D Smooth Schoenflies Conjecture is also ob-
tained.

Corollary 1.6. Any smoothly embedded 3-sphere S in the 4-sphere S* splits S* into
two components of 4-manifolds which are both diffeomorphic to the 4-ball.

The paper is organized as follows: In Section 2, the stable 4-sphere ¥ is identified with
the double branched covering space S*(F)y of S* branched along a trivial surface-knot
F. In Section 3, a homological version of Theorem 1.1 is given. Throughout Section 4,
outline of the proof of Theorem 1.1 is given. In Section 5, an isotopic deformation of an
orientation-preserving diffeomorphism of the stable 4-sphere X is studied by combining
the proof of Theorem 1.1 with Gabai’s 4D light-bulb theorem in [5]. In fact, Theorem 5.1
says that every orientation-preserving diffeomorphism of X is isotopic to the lift of an
equivalence of a trivial surface-knot F in S* to ¥ modulo a diffeomorphism of ¥ with a
support of a 4-ball disjoint from the lift of F.



2 The stable 4-sphere as the double branched covering space of
the 4-sphere branched along a trivial surface-knot

A surface-knot of genus n in the 4-sphere S* is a closed surface F' of genus n embedded
in S%. It is also called a 2-knot if n = 0, i.e., F is the 2-sphere S%. Two surface-knots F
and F" in S* are equivalent by an equivalence f if F is sent to F’ orientation-preservingly
by an orientation-preserving diffeomorphism f : S* — S%.

A trivial surface-knot of genus n in S* is a surface-knot F' of genus n which is the
boundary of a handlebody of genus n embedded in S*, where a handlebody of genus n
means a 3-manifold which is a 3-ball for n = 0, a solid torus for n = 1 or a boundary-
disk sum of n solid tori. A surface-link in S* is a union of disjoint surface knots in S,
and a trivial surface-link is a surface-link bounding disjoint handlebodies in S*. A trivial
surface-link in S* is determined regardless of the embeddings and unique up to isotopies
(see [9]).

A symplectic basis of a closed surface F' of genus n is a system (z,,x}) of element
pairs (z;,7) (j = 1,2,...,n) of Hi(F;Z) with the intersection numbers Int(x;, z;) =
Int(z}, %) = Int(z;,2) = 0 for all distinct j, j* and Int(z;, 2}) = +1 for all j. By an

3y
argument on the intersection form

Int : Hy(F;Z) x H(F:Z) — Z,

any pair (z1,2]) with Int(zy,2]) = 41 is extended to a symplextic basis (x,,2’,) of F. It
is well-known that every symplectic basis (7., ) = {(2;,2})|j = 1,2,...,n} is realized
by a system of oriented simple loop pairs (e., e,) = {(e;,€j)|j = 1,2,...,n} of F such
that the geometric intersections e; Ney = € Ne, = e; Nej, = for all distinct 7, j* and
the geometric intersection e; N e;» is a point for all 7, which is called a loop basis of F.

For a surface-knot F in S* an element x € H,(F;Z) is said to be spin if the Z,-
reduction [z]y € H{(F;Z2) of x has n([z]y) = 0 for the Zy-quadratic function

n: Hi(F;Zy) = 7y

associated with a surface-knot F' in S*. For a simple loop e in F’ bounding a surface D, in
S* with D, N F = e, the Zy-self-intersection number Int(D,, D.) (mod 2) with respect
to the F-framing is defined to be the value 7([e]s).

For every surface-knot F' in S* there is a spin basis of F' (see [7]). This means that
any spin pair (xy, z}) with Int(z;,z}) = +1 is extended to a spin symplectic basis (., =)
of F' by an argument of Arf invarinat of the Zs-quadratic function n : Hy(F;Zy) — Zs.
In particular, any spin pair (z1, ) is realized by a spin loop pair (ey, €}) of F' extendable
to a spin loop basis (e, €,) of F.

A 2-handle on a surface-knot F' in S* is a 2-handle D x I on F embedded in S* such
that (D x I) N F = (0D) x I, where I denotes a closed interval with 0 as the center and
D x 0 is called the core of the 2-handle D x I and identified with D. For a 2-handle D x [
on F in S*, the loop 9D of the core disk D is a spin loop in F' since n([0D],) = 0.

To save notation, if an embedding A : D x [ U F — X is given from a 2-handle D x [
on a surface F' to a 4-manifold X, then the 2-handle image h(D x I) and the core image
h(D) on h(F) are denoted by hD x I and hD, respectively.
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An orthogonal 2-handle pair or simply an O2-handle pair on a surface-knot F in S*
is a pair (D x I, D" x I) of 2-handles D x I and D’ x I on F which meet orthogonally
on F, that is, which meet F' only at the attaching annuli (0D) x I and (0D') x I so
that the loops D and 0D’ meet transversely at just one point ¢ and the intersection
(OD) x I N (0D") x I is diffeomorphic to the square Q = {q} x I x I (see [11] ).

An O2-handle basis of a trivial surface-knot F' of genus n in S* is a system (D, x
I, D! x I) of mutually disjoint O2-handle pairs (D; x I, D, x I)(i =1,2,...,n) on F in
S* such that the loop system (9D,, dD") = {(0D;,dD!)|i =1,2,...,n} forms a spin loop
basis of F'.

Every trivial surface F' in S* is taken as the boundary of a standard handlebody in
the equatorial 3-sphere S® of the 4-sphere S*. A standard O2-handle basis of F is an
O2-handle basis of F' which is taken in S® and a standard loop basis of F' is a loop basis
of F' determined by the attaching part of a standard O2-handle basis of F.

For any given spin loop basis of a trivial surface-knot F of genus n in S*, there is an
O2-handle basis (D, x I, D, x I) of a trivial surface-knot F' in S* such that the loop basis
(0D,,0D.) coincides with the given spin loop basis of F. This is because there is an
equivalence f : (S*, F) — (S* F) sending the standard spin loop basis to the given spin
loop basis of F' by [8, 11] and hence there is an O2-handle basis of F' which is the image
of the standard O2-handle basis of F'.

Let p : S*F)y — S* be the double branched covering projection branched along
F. The non-trivial covering involution of the double branched covering space S*(F), is
denoted by a. The preimage p~'(F) in ¥ of F which is the fixed point set of a and
diffeomorphic to F' is also written by the same notation as F. The following result is a
standard result.

Lemma 2.1. For a standard O2-handle basis (D, x I, D, x I) of a trivial surface-knot
F of genus n in S%, there is an orientation-preserving diffeomorphism

f:S4%F); = X%
sending the 2-sphere pair system
(S(Dy), S(D)) = {(S(Di), S(D}))]i = 1,2,...,n}

to the standard O2-sphere basis (5% x 1,,1 x S2) of the stable 4-sphere ¥ of genus n. In
particular, the 2-sphere pair system (S(D,), S(D.)) is an O2-sphere basis of X.

The identification of S*(F), = ¥ is fixed by an orientation-preserving diffeomorphism
f: S*F)y — X given in Lemma 2.1. Using a result of [11, 12], we have the following
corollary.

Corollary 2.2. For any two O2-handle bases (D, x I, D) x I) and (E, x I, E/ x I) of
a trivial surface-knot F' of genus n in 5S4, there is an orientation-preserving a-equivariant
diffeomorphisn f of 3 sending the 2-sphere pair system (S(Dy), S(D.)) to the 2-sphere
pair system (S(E,),S(E.)). In particular, the 2-sphere pair system (S(D,), S(D.)) for
every O2-handle basis (D, x I, D, x I) is an O2-sphere basis of .



An n-rooted disk family is the triplet (d,d.,b.) where d is a disk, d. is a system of
n mutually disjoint disks d; (i = 1,2,...,n) in the interior of d and b, is a system of n
mutually disjoint bands b; (i = 1,2,...,n) in the n-punctured disk cl(d \ d,) such that
b; spans an arc in the loop dd; and an arc in the loop dd. Let b, denote the centerline
system of the band system b,.

In the following lemma, it is shown that there is a canonical n-rooted disk family
(d,d.,b,) associated with an O2-handle basis (D, x I, D’ x I) of a trivial surface-knot F’
of genus n in S%.

Lemma 2.3. Let (D, x I, D, x I) be an O2-handle basis of a trivial surface-knot F' of
genus n in S*, and (d, d,, b,) an n-rooted disk family. Then there is an embedding

¢ :(d,de, b)) x I — (S*, D, x I,D, xI)
such that
(1) the surface F' is the boundary of the handlebody V' of genus n given by
Vi =p(c(d\ d.) x 1),

(2) there is an identification
o(de x I,d,) = (p(di) X I,9(dy)) = (Ds x I, D)

as 2-handle systems on F' and

(3) there is an identification
(b, x I,b, x I) = (D. x I, D)
as 2-handle systems on F.
In other words, Lemma 2.3 says that the 2-handle system D, x [ attaches to the

handlebody V along a longitude system of V' and the 2-handle system D’ x I attaches to
V' along a meridian system of V.

The embedding ¢ in Lemma 2.3 is called a bump embedding. The 3-ball B = ¢(D x I),
the handlebody V' in Lemma 2.3 and the pair (B, V') are respectively called a bump 3-ball,
a bump handlebody and a bump pair of F in S*.

For a bump embedding

¢ (d,d.,b) x I — (S, D, x I,D. x I),

there is an embedding ¢ : d x I — S*(F), with pp = ¢. The images $(d, x I) and
P(by x I) are respectively considered as 2-handle systems D, x I and D, x I on F in
S*(F)s by the rules of Lemma 2.3 (1)-(3), so that (D, x I, D/, x I) is an O2-handle basis
of F'in (SY)(F)y with p(D, x I, D), x I) = (D, x I, D, x I). The induced embedding

¢ (d,dy,b,) x I — (SYF)y, D, x I,D. x I)
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has pp = ¢ and is called a lifting bump embedding of the bump embedding ¢. The bump
3-ball ¢(d x I) and the bump handlebody @(cl(d\ di) x I) are respectively denoted by B
and V in S*(F) unless confusion might occur.

The composite embedding

o (d,d,, b)) x I — (SYF)y,aD, x I,aD. x I)

is another lifting bump embedding of the bump embedding ¢. The bump 3-ball ap(d x
I) = a(B) and the bump handlebody ap(cl(d \ d.) x I) = a(V') are respectively denoted
by B and V in S*(F'),. Then we have

VAV=BNB=F in SF),.

For an O2-handle basis (D, x I, D, x I) of a trivial surface-knot F' in S*, the lifting
O2-handle bases (D, x I, D), x I) and (aD, x I,aD, x I) of F in S*(F), are respectively
denoted by

(D, x I,D. x1I), and (D, x1I,D.x1I).

Note that the unions S(D;) = D; U D; and S(D}) = D} U D} are 2-spheres in S*(F), such
that (S(D;), S(D!)) is an O2-sphere pair in S*(F),.
For a lifting bump embedding, we have the following lemma.

Lemma 2.4. Let ¢ : (d,dy,b,) x I — (X,D, x I, D, x I) be a lifting bump embedding.
Let u : ¥(© — 3 be an embedding. Assume that the image @(d x I) is in the interior
of £ to define the composite embedding up : (d, d,,b,) x I — (X, uD, x I,uD’, x I).
Then there is a diffeomorphism ¢ : ¥ — ¥ which is isotopic to the identity such that the
composite embedding gup : (d,d,,b,) x I — (X, guD, x I, guD!, x I) is identical to the
lifting bump embedding ¢ : (d,d,, b)) x [ — (X, D, x I, D, x I).

In Lemma 2.4, note that any disk interior of the disk systems guD, and guD’ does
not meet the bump 3-ball B = @(d x I) in X.

In fact, since gu defines an embedding from B U B with BN B = F into ¥ and we
have gu(B,F) = (B, F), the complement gu(B) \ F of F in the 3-ball gu(B) does not
meet the bump 3-ball B, which means that any disk interior of the disk systems guD,
and guD’, does not meet the bump 3-ball B.

Unless X and ¥ have the same genus n, this property cannot be guaranteed.

3  Outline of the proof of a homological version of Theorem 1.1

The following lemma is related to the intersection numbers of the lifting O2-sphere bases
between two O2-handle bases of F in S*.

Lemma 3.1. Let (D, x I, D!, x I) be an O2-handle basis of a trivial surface-knot F' of
genus n in S*, and (¢,,(.) = (0D,,0D.) a spin loop basis of F. For a 2-handle E x I on



F in S* assume that the homology class [e] € H(F; Z) of the loop e = JF is written as

n

le] = Z kil + > s51)]

J=1

in H,(F;Z) for some integers k;,s; (j = 1,2,...,n). Then the homology class [S(E)] €
Hy(3;Z) is written as

n

[S(E)] = Z k;[S(D;)] + Z s;[S(Dj)].

Jj=1

The following lemma is a homological version of Theorem 1.1, which is obtained by a
base change of an O2-handle basis of a trivial surface-knot F' of genus n in S* by [8, 11].

Lemma 3.2. For any pseudo-O2-sphere bases (R., It,) and (S;, S;) of the stable 4-sphere
Y of genus n, there is an a-invariant orientation-preserving diffeomorphism f : 3 — %
which induces an isomorphism

fo: Hy(3;Z) — Hy(S;Z)
such that B
[fR;] =[Si] and [fR;] = [Sz,]

for all 4.

4  Outline of the proof of Theorem 1.1

Throughout this section, the proof of Theorem 1.1 is done. As well as the proof of
Lemma 3.2, it suffices to show this theorem when (R,, R.) is an O2-sphere basis of ¥ with
(Ry, R,) = (S(D), S(D.)) for an O2-handle basis (D, x I, D! x I) of a trivial surface-knot
F of genus n in S*.

Let (S, S%) be the region of the pseudo-O2-sphere basis (S, S.) of ¥. The 4-manifold
obtained from (S, S.) by adding a 4-ball D* in place of the residual region Q¢(S,,S.)
is diffeomorphic to ¥. This means that there is an orientation-preserving embedding

u: X 5%

such that
(uS(Dy),uS(D,)) = (S, 5%).

By Lemma 3.2, after applying an a-invariant orientation-preserving diffeomorphism f :
¥ — ¥, we assume that the homology classes [uS(D;)] = [S;] and [uS(D})] = [5]] are
identical to the homology classes [R;] = [S(D;) and [R}] = [S(D})] for all i, respectively.
Let (B,V) be a bump pair of the O2-handle basis (D, x I, D, x I) of F' in S* defined
soon after Lemma 2.3. Recall that the two lifts of (B, V') to ¥ under the double branched
covering projection p : S*(F); — S* are denoted by (B, V) and (B, V).
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For the proof of Theorem 1.1, we provide with three lemmas. The first lemma is as
follows.

Lemma 4.1. There is a diffeomorphism g of ¥ which is isotopic to the identity such that
the composite embedding
gu: 2O 5%

preserves the bump pair (B,V) in ¥ identically and has the property that every disk
interior in the disk systems guD, and guD;, meets every disk in the disk systems D, and
D’, only with the intersection number 0.

By Lemma 4.1, we can assume that the orientation-preserving embedding
TEDICIES

sends the bump pair (B,V) to itself identically and has the property that every disk
interior in the disk systems uD, and uD; meets every disk in the disk systems D, and
D!, only with intersection number 0. Then we have the following lemma:

Lemma 4.2. There is a diffeomorphism g of > which is isotopic to the identity such that
the composite embedding
gu:%0 %

sends the disk systems D, and D identically and the disk interiors of the disk systems
guD,, guD)., to be disjoint from the disk systems D, and D’ in .

For the O2-sphere basis (S(D.), S(D.)) of 3, let
¢ ={q=S(D;)NSD))|i=1,2,...,n}

be the transverse intersection point system between S(D,) and S(D.).

The diffeomorphism ¢ of ¥ in Lemma 4.2 is deformed so that the disks guD; and D;
are separated, and then the disks guD; and D, are separated while leaving the trans-
verse intersection point ¢;. By this deformation, we obtain a pseudo-O2-sphere basis
(guS(Dy), guS(D.)) of ¥ which meets the O2-sphere basis (S(Dy), S(D.)) at just the
transverse intersection point system g.

Next, the diffeomorphism ¢ of ¥ is deformed so that a disk neighborhood system of g,
in guS(D,) and a disk neighborhood system of ¢, in S(D,) are matched, and then a disk
neighborhood system of ¢, in guS(D.) and a disk neighborhood system of ¢, in S(D.)
are matched.

Thus, there is a diffeomorphism ¢ of ¥ which is isotopic to the identity such that the
meeting part of the pseudo-O2-sphere basis (guS(D,), guS(D.)) and the O2-sphere basis
(S(Dy),S(D.,)) is just a disk neighborhood pair system (d,,d.) around the transverse
intersection point system g.

Now, assume that for an embedding u : ©(® — ¥, the meeting part of the pseudo-
O2-sphere basis (uS(D,),uS(D.)) and the O2-sphere basis (S(D.), S(D.)) is just a disk
neighborhood pair system (d,, d.) of g.. Then we have the following lemma:
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Lemma 4.3. There is an orientation-preserving diffeomorphism h of ¥ such that the
composite embedding
hu: 2O — %

preserves the O2-sphere basis (S(D.), S(D,)) identically.

Since (uS(D.),uS(D.)) = (S, S.) and (R., R,) = (S(D.),S(D.)), an outline of the
proof of Theorem 1.1 is completed by Lemma 4.3.

The proof of Lemma 4.3 is obtained from Lemma 4.4 (called Framed Light-bulb Dif-
feomorphism Lemma) which is easily proved in comparison with an isotopy version of this
lemma using Gabai’s 4D light-bulb theorem [5] stated in Section 6.

A 4D solid torus is a 4-manifold Y in S* which is diffeomorphic to S' x D3. A boundary
fiber circle of the 4D solid torus Y is a fiber circle of the S'-bundle Y = S! x S2. Let
Ye=cl(S*\Y). Let Y, be a system of mutually disjoint 4D solid tori Y;, (i =1,2,...,n)
in 5%, and Y the system of the 4-manifolds Y¢, (i = 1,2,...,n). Let

Ny, = Nis, Y7
Then Lemma 4.4 is stated as follows.

Lemma 4.4 (Framed Light-bulb Diffeomorphism Lemma). Let D, x I be a system
of mutually disjoint framed disks D; x I (i = 1,2,...,n) in NY,° such that 9D; is a
boundary fiber circle of Y; and

(D, x I)NOYS = (0D;) x I

for all ¢. If E, x I is any system of mutually disjoint framed disks E; x I (i =1,2,...,n)
in NY, such that
(B, x I)NOYS = (0F;) x I = (0D;) x I

for all 7, then there is an orientation-preserving diffeomorphism h : $* — S* sending Y,
identically such that
WD, x I,D.,) = (E. x I, E.).

5 A classification of orientation-preserving diffeomorphisms of
the stable 4-sphere

Let Diff*(D* rel 9) be the orientation-preserving diffeomorphism group of the 4-ball D*
keeping the boundary 0D* by the identity. An identity-shift of a 4-manifold ¥ is a
diffeomorphism ¢ : 3 — ¥ obtained from the identity map 1 : ¥ — X by replacing the
identity on a 4-ball in X disjoint from F with an element of Diff" (D*, rel 9).

The following result is obtained by using Framed Light-bulb Isotopy Lemma (explained
soon) based on Gabai’s 4D light-bulb theorem in [5] instead of Framed Light-bulb Diffeo-
morphism Lemma.
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Theorem 5.1. Let X be the stable 4-sphere X of any genus n > 1, and h : ¥ — X any
orientation-preserving diffeomorphism. Then there is an a-equivariant diffeomorphism
f 3 — ¥ such that the composite diffeomorphism fh > — Y induces the identity

isomorphism }
(fh)x =1: Hy(X;Z) — Ho (X Z).

Further for any such a-equivariant diffeomorphism f : X — X, the composite diffeomor-
phism fh: > — ¥ is isotopic to an identity-shift ¢+ of 3.

To prove Theorem 5.1 in the process of the proof of Theorem 1.1, we need to show that
the diffeomorphism h of ¥ in Lemma 4.3 can be replaced by a diffeomorphism of > which is
isotopic to the identity. For this purpose, we need the following lemma (Framed Light-bulb
Isotopy Lemma), coming from Gabai’s 4D light-bulb theorem in [5, Theorem 10.4]. Note
that the assumption of Framed Light-bulb Isotopy Lemma adds an additional condition
to the assumption of Framed Light-bulb Diffeomorphism Lemma (Lemma 4.4).

Lemma 5.2 (Framed Light-bulb Isotopy Lemma). Let Y, be a system of mutually
disjoint 4D solid tori Y; (i = 1,2, ...,n) in S%. Let D, x I be a system of mutually disjoint
framed disks D; x I (i = 1,2,...,n) in NY,¢ such that dD; is a boundary fiber circle of Y;
and

(D, x I)NOYS = (0D;) x I

for all 4. If F, x [ is any system of mutually disjoint framed disks E; x [ (i =1,2,...,n)
in NY,¢ such that
(B, x I)NOY = (0E;)) x I = (0D;) x 1

for all ¢ and the unions D; U E; (1 = 1,2,...,n) are mutually disjoint, then there is a
diffeomorphism A : S* — S* which is Y,-relatively isotopic to the identity such that

hD. x I,D,) = (E, x I, E,).

The identity-shift ¢ in Theorem 5.1 is needed because at present it appears unknown
whether o (Diff" (D*, rel 9) is trivial or not. However, it is known that the identity-shift
¢ is concordant to the identity since I's = 0 (see Kervaire [17]), so that every orientation-
preserving diffeomorphism h : X — X for the stable 4-sphere ¥ of any genus n is smoothly
concordant to an a-equivariant orientation-preserving diffeomorphism h = f~1: ¥ — 3.

In the piecewise-linear category, the notion of an identity-shift is not needed since ev-
ery piecewise-linear orientation-preserving homeomorphism of the 4-disk D* is piecewise-
linearly isotopic to the identity. Thus, we have that every piecewise-linear orientation-
preserving homeomorphism h' : X — X for the stable 4-sphere X of any genus n is piecewise-
linearly isotopic to an a-equivariant orientation-preserving piecewise-linear homeomor-
phism h' : 3 — 3.

The following result is a consequence of Theorem 5.1.
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Corollary 5.3. Every O2-sphere basis of ¥ is isotopic to the O2-sphere basis (S(D,), S(D.))
constructed from an O2-handle basis (D, x I, D, x I) of a trivial surface-knot F' of genus
n in S*.

This result says that every O2-sphere basis of ¥ up to isotopies comes from an O2-
handle basis (D, x I, D, x I) of a trivial surface-knot F' of genus n in S* which is unique
up to orientation-preserving diffeomorphisms of S* by [11, 12].
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