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1 Introduction

A knot invariant v is called a Vassiliev invariant if it vanishes on singular knots with
sufficiently large number of double points. More precisely, we extend v to an invariant
v") on singular knots with exactly r (transverse) double points with v(®) = v and

w0 (3) =2 (30) - (X) "

We say v is of order r if v % 0 and v = 0, and the singular knot invariant v(") is
sometimes called the Vassiliev derivative of order r. The recurrence formula (1.1) is called
Vassiliev skein relation while it was first explicitly introduced in [Birman, 1993, Birman
and Lin, 1993]. As an important result in that paper, it was pointed out that Vassiliev
invariants are deeply related to quantum invariants. Namely, consider the following Taylor
series of the Jones polynomial V:

Vi) e = Y an(K)a™

It was shown that each a, is of order n and hence a Vassiliev invariant. Actually, it
was even shown that analogues hold for other quantum invariants; i.e. ones coming from
representations of quantum groups.

On the other hand, in light of recent developments of knot theory, it has been revealed
that quantum invariants are kinds of “de-categorifications” of categorical invariants. The
first concrete study was carried out by Khovanov; in the seminal work [Khovanov, 2000]; he
showed that the Jones polynomial V' (K) is obtained as the (graded) Euler characteristic of
a homology invariant Kh(K), which is nowadays called Khovanov homology. A number of
researches follow it, and quantum invariants of type A are all categorified, e.g. [Khovanov
and Rozansky, 2008a, Khovanov and Rozansky, 2008b, Cautis and Kamnitzer, 2008a,
Cautis and Kamnitzer, 2008b, Rasmussen, 2015].

It seems a natural question to ask whether there is a direct relationship between cat-
egorified knot invariants and Vassiliev invariants. The goal of our project is to provide a
higher-categorical background for Vassiliev theory to answer the question positively. As
a first step, we defined Vassiliev derivatives of Khovanov homology in [Ito and Yoshida,
2020, Ito and Yoshida, 2021] and proved that they are singular knot invariants. This is

done by constructing an explicit chain map, which we usually write i’, that categorifies



the subtraction in Vassiliev skein relation (1.1). However, although we showed homotopy
invariance of ® under certain moves, the geometric meanings of the higher homotopies are
unclear; this is because there is no such thing as “equality of equality” in the combinatorial
context where (1.1) lies in.

In this article, we present our result in view of the cohomology of the knot space,
which may reveal the meaning of higher categorical structures. In fact, in contrast to the
combinatorial characterization above, Vassiliev invariants were originally discovered in
the study of the space of knots [Vassiliev, 1990]. Indeed, if KC denotes the space of knots,
then every knot invariant is uniquely associated with a O-cocycle in the cohomology group
H°(K) or the reduced on H°(K) if it is appropriately normalized on the unknot:

{knot invariants}/{constants} = [r0(K), Z]/Z =~ H°(K)

Vassiliev invariants arise from a spectral sequence converging to H *(KC). Hence, if his
construction is described categorically, then it may automatically explain the geomet-
ric meaning of categorified knot invariants. Specifically, we investigate the fundamental
groupoid 111 KC and show that it has a combinatorial description in terms of knot diagrams
and Reidemeister moves. In addition, to take discriminant Y into account, we embed
II, K into a category C obtained by attaching crossing-changes to II;K. In this setting,
our main result can be presented in the following form.

Main Theorem. Khovanov homology extends to a functor
Kh:C — D%(grAb’) |

where the target category is the bounded derived category of graded abelian groups of finite
total dimension.

We note that Section 1 implies that each morphism in C representing a crossing-change
induces a morphism between Khovanov homologies of knots that is itself invariant of a
singular knot. Therefore, it extends Khovanov homology to singular knots so that the
following is an exact triangle in D?(grAb"):

() = 5 (X) = 2 (X) == (X)

Furthermore, we discuss categorical analogues of relations coming from the Vassiliev’s
spectral sequence; namely, the Fl-relation and the 4T-relation.

2 Categorification of 0-cocycles

We first quickly sketch the basic idea of the categorification of 0-cocycles in terms of
fundamental groupoid. For a topological space X and an abelian group A, an A-valued
0-cocycle on X is an element of either of the following equivalent sets:

[X,A] = [moX, A] = HO(X; A)

where [, —] is the set of homotopy classes of continuous maps, and 7y X is the set of
path-connected components of X.



Definition. Let X be a topological space. The fundamental groupoid of X is the category
IT; X described as follows:

e objects are points on X;

» morphisms are boundary-fixed homotopy classes of continuous paths ¢ : [0,1] — X,
with dom ¢ = ¢(0) and cod ¢ = ¢(1);

e the composition is concatenation of paths.

It is easily seen that every morphism of I1; X is invertible; in other words, it 11, X is
in fact a groupoid. Also, an isomorphism class of I1; X is nothing but a path-connected
component of X. It follows that there is a bijection 11, X /isom = 7 X, so one may say
IT; X is a categorification of myX.

On the other hand, we consider categorification of coefficient abelian group in the
following form. Recall that, for a triangulated category T, the Grothendieck group K(T)
is the abelian group generated by the isomorphism classes of T subject to the relation
[X] — [Y] + [Z] = 0 for every exact triangle in T of the following form:

X—=Y—>7-3X

Definition. Let A be an abelian group. A triangulated category T is called a categorifi-
cation of A if it is equipped with an isomorphism K(7) = A.

Example 2.1. Let A = Z be the ring of integers. For a field k, we denote by Db(Vect};)
the bounded derived category of chain complexes of finite dimension k-modules. Then,

the Euler characteristic ‘ _
X(C*) = (=1)" dimy, C*
induces an isomorphism K (D’(Vect!)) = Z. Hence, D*(Vect}) is a categorification of Z.

Ezample 2.2. Let A = Z[q,q '] be the Laurent polynomial ring. For a field k, we de-
note by D’(grVect!) the bounded derived category of graded k-modules of totally finite
dimension. More precisely, the objects are bounded bigraded k-modules C** together
with k-homomorphisms d : C% — C™J such that dod = 0. Then, the graded Euler

characteristic o N
X(C™ ) = Z(—l)’qj dimj C*/
i,J
induces an isomorphism K (D%(grVect})) = Z[q,¢"']. In other words, D’(grVect}) is a
categorification of the Laurent polynomial ring.

If a categorification T of an abelian group A, then an A-valued 0-cocycle on a topo-
logical space X will be categorified as a functor

F-TLX =T

Indeed, given such an F', we obtain a map my(X) — K(7) as the one induced by F on
the isomorphism classes. As mentioned in the introduction, one of the goals of the article
is to exhibit Khovanov homology in this form in the case X = K and 7 = D’(grVect).
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Figure 3.1: A 2-simplex defining a composition

3 The fundamental groupoid of the knot space

To consider categorification of knot invariants in the sense of the previous section, we
need more convenient description of the fundamental groupoid of the knot space. For
this, recall that the singular simplicial set of a topological space X is the simplicial set
SeX such that

SpX = {continuous maps A" — X} |

where A™ is the standard simplex. The face and degeneracy operators are defined in
the obvious way. The simplicial set S, X has all the weak-homotopy information on X:
specifically, the fundamental groupoid I1; X is equivalently given as follows:

o objects are elements of SyX;

e morphisms are equivalent classes of S;X under the relation diu ~ dyu for each
2-simplex u € S X with dou degenerate;

o the composition is defined so that [g] o [f] = [h] holds for f,g,h € S1X if and only if
there is a 2-simplex u € So X with dyu = ¢, dyu = h, and dyu = f (see Figure 3.1).

Generally, the above construction works for every Kan complex K; we write II; K the
resulting category and call it the fundamental groupoid of K.

Definition. For a compact manifold X and a smooth fiber bundle ¢ : Y — B, we define
a simplicial set EZ(X,Y) with £2(X,Y) consisting of smooth maps f : X x A" — Y such
that

o for each t € A%, the restriction f\XX{t} : X — Y is an embedding;
« for each face o C A?, the map
af, X xo—=Bxo; (vt (q¢f(z,1),t)
is “generic” in the sense that its (multi-)jets are transverse to all the discriminants.

Proposition 3.1 (cf. [Lurie, 2009, Proposition 1] and [Lee, 2003, Theorem 10.16]). Let
X be a compact manifold and q : Y — B a smooth fiber bundle. Then, EB(X,Y) is a
Kan complex equipped with a canonical homotopy equivalence

EE(X,Y) = S.Emb(X,Y)

where Emb(X,Y") is the space of smooth embeddings X — Y with the Whitney C°-
topology. Specifically, there is an equivalence of categories ILEP(X,Y) ~ 11, Emb(X,Y).



RI | RI | RII

<X ¥

(t2,#3) | (£t2,t) | triple point

Table 3.1: Singularities associated with the Reidemeister moves

MMG6 | MM7 | MM8 | MM9 | MM10

X <] <X

(£t2,t) and (t,0) | (t3,¢%) | (£2,#3) and (0,¢) | (£t3,t) | quadruple point

Table 3.2: Singularities associated with the movie moves

We set X = SY, Y = R3 and B = R? in Proposition 3.1. Then, we obtain an
equivalence of categories ,
LES (ST RY) ~ LK

where K = Emb(S!, R?) is the space of knots in R®. We write D := IT,EX*(S*, R?). Now,
the classification of the singularities yields the following combinatorial description of the
category D.

Theorem 3.2 (cf. [Carter and Saito, 1998, Roseman, 2000, Roseman, 2004]). The cate-
gory D is equivalent to the one described as follows:

e objects are knots associated with a knot diagram;

e morphisms are sequences of isotopies the moves associated with the singularities in
Table 3.1, which are usually called the Reidemeister moves;

o morphisms are subject to the relation generated by

(i) dnvertibility of Reidemeister moves,
(ii) commutativity of Reidemeister moves applied to remote parts, and

(iii) the moves associated with the singularities in Table 3.2.

Remark 3.3. The relations coming from the singularities in Table 3.2 form a part of movie
moves in [Carter and Saito, 1998].

4 Khovanov homology as a categorified 0-cocycle

In the previous section, we obtained a category of knot diagrams D together with an
equivalence D ~ II; . Note that each object in D is canonically associated with a knot
diagram D. Hence, in view of the combinatorial description in Theorem 3.2, one obtains
a categorified 0-cocycle in the following steps:



(i) construct a bounded chain complex C(D) of graded modules for each knot diagram
D;

(ii) specify a chain homotopy along each Reidemeister moves;

(iii) verify the homotopy commutativity of diagrams associated with movie moves in
Table 3.2.

In this section, We carry out the process in the case of Khovanov homology.

For this, we quickly review the construction of Khovanov homology. For a fixed base
ring k, we write A = k[z]/(2?) the Frobenius algebra with the following comultiplication
and counit:

Al)=1®z+z1, Al@)=zxz, 1)=0, cx)=1

As Frobenius algebras are equivalent to 2-dimensional topological quantum theory (aka. TQFT),
we denote by Z4 the associated TQFT. In addition, by setting deg1 = 1 and degx = —1
in A= Z,(S"), one sees that Z4 lifts to a functor

Z, : Coby — grMod!, |

where Cobs is the category of 2-dimensional cobordisms. Using this functor, we define
a complex C(D) in grMod!, for each diagram D as follows: for each crossing ¢ of D,
consider either of the following complexes according to the sign of c:

-1 0 1

oo | >ZA<><>”ZA<x>},
X o (2 ()00 — o )

Then, construct C'(D) by stacking up all such elementary parts.

Theorem 4.1 (cf. [Clark et al., 2009]). For every field k, Khovanov homology with coef-
ficients in k extends to a functor

Kh - 1L,K — D(grMod})
whose image in (7oK, Z[q, ¢ ]| agrees with the (unnormalized) Jones polynomial.

Proof. Khovanov [Khovanov, 2000] constructed a concrete chain map between complexes
C(D) associated with Reidemeister moves. Furthermore, in [Clark et al., 2009], it was
shown that Khovanov homology satisfies the relation associated with all movie moves con-
taining Table 3.2. Therefore, in view of Example 2.2 and the recipe in the last paragraph
in the previous section, we obtain the required functor. O



5 Crossing-change

We next consider crossing-changes from the viewpoint of categorified cocycles. Let us
denote by X C C*(S',R?) the subset of generic smooth immersions. According to the
singularity theory of smooth maps, K is actually the 0-th stratum of a stratification
X = KUJ;o X5 the set X' == |J, ¥j is hence the discriminant. For example, the lower
strata are described as follows:

o 3| is the space of immersions with unique transverse double points, which are exactly
singular knots with single double points;

o 3, is the space of immersions with exactly two transverse double points.

We denote by le,X C II; X the subcategory whose morphisms are those paths which are
transverse to the strata .. Since each stratum > C X is of codimension i, morphisms
in [T} X are continuous families {K;}o<;<1 of knots which may be singular with single
double points only at finitely many parameters. Specifically, 3} has a normal bundle
which is canonically oriented in the direction from a negative resolution to a positive one
on each double point. We further define ﬁlx,X C TI¥' X the subcategory consisting of
paths which are along the orientation of the normal bundle of ¥} on each intersection.

By an analogous argument to Section 3, we again obtain a combinatorial model for the
category ﬁlz/X .

Proposition 5.1. The category ﬁlyX s equivalent to the category generated by D given
in Theorem 3.2 and morphisms of the form

/'\’ = \/'\ (5.1)

(i) the “crossing-change” (5.1) commutes with Reidemeister moves applied to separated
parts;

subject to the following relations:

(ii) the following are commutative:

K= X“>\lL§

K= X=X 8-4

We use Proposition 5.1 to exhibit our extension of Khovanov homology [Ito and
Yoshida, 2021] as a functor out of the category H%’X . The construction is similar to



that in the previous section. All we have to do is to assign a chain map to the crossing-
change (5.1) and to verify the conditions in Proposition 5.1. As for the first part, we

define a morphism
3 /7 N
D : —
C ('/\> e ( /\'>

by the following morphism:

0%\’) {ZAEX)Z>ZA(l><>—> 0l } :
() { 0 — 200 Warx)

where the morphism ® on degree 0 is given as the following sum of two cobordisms:

o= ()= ()

Theorem 5.2 ([Ito and Yoshida, 2020, Ito and Yoshida, 2021]). With the above crossing
change ®, Khovanov homology extends to a functor

Kh : TIY' X — D*(grMod})

In fact, Theorem 5.2 defines Vassiliev derivatives of Khovanov homology thanks to the
next result.

Proposition 5.3. Let T be a triangulated category, and suppose we are given a functor
F:Ix—T

Then, it defines a singular knot invariant with values in T so that, for each double point
in a singular knot diagram, it comes equipped with the following exact triangle:

F (X) crossing-ehnt, g (X) S F (X) L YF </'\’> . (5.2)

Notice that, by definition of the Grothendieck group K(7), the exact triangle (5.2)
gives rise to the equation

F (X)) = 1 O] - [ OX))

H Q-0

in K (7). This implies that the extension of F' to singular knots is a categorification of
Vassiliev derivatives.



6 Relations from Vassiliev’s spectral sequence

In this final section, we discuss further property of our extension of Khovanov homology
in Theorem 5.2. To begin with, we review Vassiliev’s idea, which is roughly as follows:
let M C C*®(S',R3) be the subspace of “generic” smooth maps S* — R3. As in the
case of the space of immersions in Section 5, the space M also has a stratification M =
KU~ i according to the singularity theory with the discriminant the set ¥ == [, ;.
Each stratum »3; consists of smooth maps with singularities of degree ¢ in the sense of
[Boardman, 1967]. For example, the lower strata are described as follows:

e Y is the space of immersions with unique transverse double points, which are exactly
singular knots with single double points;

e Y, is the space consists of

(a) immersions with ezactly two transverse double points and
(b) injective maps with unique singular values

Since M is a contractible spaces, Alexander duality® yields the following isomorphism:
H(K) = Heora(S)

where the right hand side is (a certain colimit of) Borel-Moore homology. With respect
to the filtration FPY = J._ 3, we therefore obtain a spectral sequence of the following
form:

i>p

EM>H_  , ,1(F"Y) = H(K)

Vassiliev invariants of order ¢ are exactly the invariants that lie in the ¢-th filtration of
H°(K) with respect to the spectral sequence. Note that the elements of the groups of the
form E%~* may be related to an order i invariants. Combinatorial descriptions of such
groups are given by [Vassiliev, 1990] and [Kontsevich, 1993] in terms of chord diagrams. It
however turns out that not all functions on chord diagrams are related to knot invariants.
A criterion was given by [Kontsevich, 1993]: functions should satisfy two relations called
the Fl-relation and the 4 T-relation. In the rest, we discuss their categorical analogue on
Khovanov homology.

6.1 The Fl-relation

For a function v on singular knot diagrams, the FI relation is represented as vanishing at
the following type of double points:

v =0 . (6.1)

In terms of the category ﬁlz'X or II; M, the relation arises from comparison of the two
paths in Figure 6.1. Hence, in the categorical context, the FI relation can be seen as
a condition for the crossing-change morphisms to commute with Reidemeister moves of

type L.

We cheat here; M is not finite dimensional. For details, we refer the reader to [Vassiliev, 1990]




Figure 6.1: Two paths for the FI relation

Theorem 6.1. The morphism o defined in Section 5 commutes with the morphisms asso-
ciated with Reidemeister moves of type I. More precisely, the following diagram commutes

in D*(grMod!):
Kh

Rp

v \Rl . (6.2)
Kh '\/) S NN ) X)
/

We note that since the top-to-bottom morphisms in the diagram (6.2) are quasi-
isomorphisms, so is the bottom. As Khovanov homology on singular knots are defined
using exact triangles induced by the morphism ®, we obtain the following vanishing of
Vassiliev derivative:

Kh =0

In this point of view, Theorem 6.1 is a categorification of the Fl-relation (6.1).

6.2 The 4T-relation

AS for the 4T-relation (aka. the four-term relation), its knot diagrammatic representation

In contrast to the FI—relatlon, the categorlcal situation is a little bit subtle. Indeed,
associated categorical condition is not commutativity but the “higher-commutativity”
of 3-dimensional diagrams. Since triangulated categories do not carry sufficient higher-
dimensional information in general, the categorical analogue of 4T-relation cannot be
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stated as conditions of morphisms in triangulated categories. Thus, we instead state it as
a condition on categorical Vassiliev derivatives.

Theorem 6.2 (in preparation). The Vassiliev derivatives of Khovanov homology defined
in Section 5 satisfies the 4T-relation in the sense that the diagram below commutes up to

chain homotopies:
N R /
Kh SEh| |
\ \

7 N

N \
Kh <)< Kh >< 5
/ v

RW\ /<£

Kh >(>i % Kh >><

where the arrows with label Ryy are the quasi-isomorphisms induced by the Reidemeister
moves of type Il (see Theorem 5.2).

Remark 6.3. The difficulty of categorical 4T-relation mentioned above suggests that we
should need higher categorical setting in order to categorify Vassiliev theory. One possible
candidate is the notion of pretriangulated dg-categories. In fact, using this framework,
4T-relation is represented as exactness of a 2-cycle spanned by crossing changes and
Reidemeister III-moves.

Obtained the fundamental relations in Kontsevich invariants, we are now sure that the
crossing-change morphism @ is the “right” one in view of Vassiliev theory. In addition,
we highly expect that there should be a categorified version of weight systems so that
Khovanov homology is expanded into them, which we are searching for.
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