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1 Introduction

Skein algebras have been introduced by Przytycki and Turaev at the end of the 80’s as
a tool to study the SU(2) Witten-Reshetikhin-Turaev topological quantum field theories.
Skein algebras appear in TQFTs through their finite dimensional representations. Such
representations exist if and only if the parameter A is a root of unity. A generalization
named stated skein algebras were introduced by Bonahon-Wong [BW11] and Lé [Lel8].
The goal of the present note is to state what is known and to dress a series of open
problems towards the resolution of the following

Problem 1.1. Classify all finite dimensional weight representations of stated skein alge-
bras when A is a root of unity of odd order.

As we shall see, this problem is deeply connected to the study of the Poisson geome-
try of relative character varieties, more precisely to the computation of their symplectic
leaves. Here we choose the order of A to be odd and restrict to weight representations for
simplicity. Actually, even for the bigon, one of the simplest marked surface, Problem 1.1
is undecidable so we will reformulate later a more reasonable version in Problem 6.2.

2 Definition of stated skein algebras

Definition 2.1. A marked surface ¥ = (3, A) is a compact oriented surface ¥ (possibly
with boundary) with a finite set A = {a;}; of orientation-preserving immersions a; :
0,1] < 0%, named boundary arcs, whose restrictions to (0, 1) are embeddings and whose
interiors are pairwise disjoint.

An embedding f : (3, A) — (X', A") of marked surfaces is a orientation-preserving
proper embedding f : ¥ — X' so that for each boundary arc a € A there exists a’ € A such
that foa is the restriction of a’ to some subinterval of [0, 1]. When several boundary arcs
ai,...,a, in X are mapped to the same boundary arc b of ¥’ we include in the definition
of f the datum of a total ordering of {a4, ..., a,}. Marked surfaces with embeddings form
a category MS with symmetric monoidal structure given by disjoint union.

By abuse of notations, we will often denote by the same letter the embedding a; and its
image @;((0,1)) C 02 and both call them boundary arcs. We will also abusively identify
A with the disjoint union | |, ;((0,1)) C 9% of open intervals. The main interest in



considering marked surfaces is that they have a natural gluing operation. Let 3 = (X, .A)
be a marked surface and a, b € A two boundary arcs. Set ¥4 1= 2 /a(t) ~b(1 —t) and

Agpp == A\ aUb. The marked surface Xy, = (Xqpp, Aass) is said obtained from 3 by
gluing a and b. We say that ¥ = (X, A) is unmarked if A= 0. A puncture is a connected
component of 9% \ A.

Notations 2.2. Let us name some marked surfaces. Let g, be an oriented connected
surface of genus g with n boundary components. We will sometimes write ¥, = X 0.

1. The n'"-punctured monogon m,, = (Xo,11,{a}) is Zgs1 With one boundary arc in
one of its boundary component.

2. The n'*-punctured bigon D, = (Soni1,{a,b}) is Lone1 with two boundary arcs in
the same boundary component. We call B := Dy simply the bigon. We also write
D7 = (o2, {a,b}) the annulus with one boundary arc in each boundary component.

3. The triangle T = (D? {a,b,c}) is a disc with three boundary arcs on its boundary.

4. We denote by Eg,n = (Xgn+1,{a}) the surface ¥, with a single boundary arc in
one of its only boundary component.

A tangle is a compact framed, properly embedded 1-dimensional manifold T C ¥ x
(0,1) such that for every point of 9T C A x (0,1) the framing is parallel to the (0, 1)
factor and points to the direction of 1. The height of (v,h) € ¥ x (0,1) is h. If a is a
boundary arc and 7" a tangle, we impose that no two points in 9,7 := 9T Na x (0,1)
have the same heights, hence the set 0,7 is totally ordered by the heights. Two tangles
are isotopic if they are isotopic through the class of tangles that preserve the boundary
height orders. By convention, the empty set is a tangle only isotopic to itself. A state is
amap s: 0T — {£} and a stated tangle is a pair (T, s).

Definition 2.3. Let k be a (unital associative) commutative ring and let A2 € k* be
an invertible element. The stated skein algebra Sa(X) is the free k-module generated by
isotopy classes of stated tangles in ¥ x (0, 1) modulo the following skein relations

K= (+47"X and Q=-(L+47)

c[i = C[: =0, dj = A2 ‘ and A7 — A’ =D |

The product of two classes of stated tangles [T7, s1] and [T5, s5| is defined by isotoping T}
and Ty in ¥ x (1/2,1) and ¥ x (0,1/2) respectively and then setting [17, s1] - [T3, s2] =
[T1UT5, s1Uss). Nozv consider an embedding f : 31 — 35 of marked surfaces and define a

proper embedding f : 3 x (0,1) — 33 x (0, 1) such that: (1) f(z,t) = (f(2), ¢(x,1)) for ¢
a smooth map and (2) if a1, as are two boundary arcs of 3; mapped to the same boundary
arc b of 35 and the ordering of f is a1 < as, then for all z; € a1, 22 € as, 11,15 € (0, 1)~one
has (,O(Il,tl) < gO(IQ,tQ). We define f* : 8,4(21) — SA(ZQ) by f*([T, S]) = [f(T), SOf_l].
The assignment ¥ — S4(X) defines a symmetric monoidal functor Sy : MS — Alg,.




Let a, b be two distinct boundary arcs of 3, denote by m : ¥ — 3,4, the projection
and ¢ := m(a) = 7(b). Let (Tp, so) be a stated framed tangle of ¥,4, x (0, 1) transversed
to ¢ x (0, 1) and such that the heights of the points of Ty N e x (0,1) are pairwise distinct
and the framing of the points of 7, N ¢ x (0,1) is vertical towards 1. Let 7' C ¥ x (0, 1)
be the framed tangle obtained by cutting T, along c¢. Any two states s, : 9,7 — {—, +}
and sp, : 0,7 — {—, 4} give rise to a state (s4, So, sp) on T'. Both the sets 0,7 and 0,T
are in canonical bijection with the set Ty N ¢ by the map 7. Hence the two sets of states
s, and s, are both in canonical bijection with the set St(c) := {s:cN Ty — {—,+}}.

Definition 2.4. Let 04 : Sa(Xax) = Sa(X) be the linear map given, for any (75, s¢)
as above, by:

90#b<[T0750D = Z [Tv (5’ 5075)}'

seSt(c)

The gluing map 6,4 is injective ( [Lel8, Theorem 3.1]) and coassociative in the sense
that if a,b, ¢, d are four boundary arcs then 0y, © 0cpq = Gerq © Go. While considering
two copies B U B’ of the bigon and gluing b to a’, we get another bigon. So we have a

coassociative coproduct
A= Qb#a/ : SA(B)®2 — SA(B)

The algebra S4(B) with this coproduct has a structure of Hopf algebra that will be
denoted by O,[SLs]. Now consider a marked surface ¥ with two boundary arc ¢ and d.
Since (B U X),4. = X, we have a left comodule map

Af = Hb#c : SA(E) — Oq[SLQ] X SA(Z)

Similarly, since (X UB)gygq, = X, we have a right comodule map A¥ := 044, : Sa(X) —
S4(¥) ® O,4[SLy]. The main property of stated skein algebras is the

Theorem 2.5. (K.-Quesney [KQ19a, Theorem 1.1], Costantino-Lé [CL19, Theorem 4.7])
The following sequence is exact:

AL —aoAgé

ec d
0 = Sa(Bepa) —2% Sa(X) O,[SLy] % Sa(X),

where o(z ®@y) ==y @ x.

Let 3 a marked surface and p a boundary puncture between two consecutive boundary
arcs a and b on the same boundary component 0 of 9¥X. The orientation of ¥ induces
an orientation of 0 so a cyclic ordering of the elements of 0 N A we suppose that a is
followed by b in this ordering. We denote by a(p) an arc with one endpoint v, € a and
one endpoint v, € b such that a(p) can be isotoped inside 0. Let a(p);; € Sa(X) be the
class of the stated arc (a(p), s) where s(v,) =@ and s(v,) = J.

Definition 2.6. We call bad arc associated to p the element a(p) . € S4(X). The
reduced stated skein algebra ST¢%(X) is the quotient of Sa(X) by the ideal generated by
all bad arcs.



3 Some properties of stated skein algebras

Let us list some properties of stated skein algebras which are useful towards the resolution
of Problem 1.1. From now on, we suppose that A € C is a root of unity of odd order
N >1.

Theorem 3.1. (Bonahon-Wong [BW11] for unmarked surfaces, K.-Quesney [KQ19a] for
marked surfaces) There is an embedding

Oh% : §:1(2) = 2 (84(D))

named Chebyshev-Frobenius morphism, sending the (commutative) algebra at +1 into the
center of the skein algebra at AY?. Moreover, Ch% is characterized by the facts that if ¥
is a closed curve, then Ch%(v) = Tn (), where Tx(X) is the N Chebyshev polynomial
of first type, and if y; is a stated arc, then Ch%(cy;) = oz,ij) is the class of N parallel
copies of oi; pushed along the framing direction.

If R is a ring with center Z(R) such that R is a Z(R)-module of finite rank r, then R is
a Polynomial Identity (PI) ring. If moreover R is prime, then writing S := Z(R) \ {0}, a
theorem of Posner shows that the localization S~ R is a central simple algebra with center
S™1Z(R), so is a matrix algebra is some algebraic closure of S™'Z(R). In particular, the
rank r is a perfect square and we call PI-dimension of R its square root. Computing the
PI-dimensions of stated skein algebras is an important step towards the classification of
its representations. The orientation of ¥ induces an orientation o™ of the boundary arcs

of A.

Definition 3.2. 1. For p an inner puncture (i.e. an unmarked connected component
of %), we denote by v, € S4(X) the class of a peripheral curve encircling p once.

2. For 0 € m(9%) a boundary component which intersects A non trivially, denote
by p1,...,p, the boundary punctures in d cyclically ordered by ot and define the
elements in S’¢4(3):

ap = a(p1)ss - alpn)ss, and  ay' = a(p)——...ap.)-—.

red

We easily see that in S74(X), we have agay’ = 1.

3. For 0 € my(0%) a boundary component whose intersection with A is 2n, for n > 1,
denote by pi,...,psn the boundary punctures in 0 cyclically ordered by o*. For
ke {l,...,N — 1}, write the product of bad arcs:

BNP = a(p)E L alp)NTF L a(pan1)* L a(pan)VTF € SA(D).

We will call even such a boundary component 0.

Theorem 3.3. 1. (Bonahon-Wong [BW11] Przytycki-Sikora [PS19], Lé [Le18]) Sa(%)
is a domain.

2. (Bullock [Bul99] for unmarked surfaces, K. [Kor20/for marked surfaces) Ss(X) is
finitely generated. When the marking is non trivial and the surface connexe, we even
have explicit finite presentations of Sx(X).
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3. (Frohman-Lé-Kania-Bartoszynska [FKL19b]) If 3 is unmarked, then (i) the center
of S4(X) is generated by the image of the Chebyshev-Frobenius morphism together
with the eventual peripheral curves ~y, for p an inner puncture. (ii) Sa(X) is finitely

generated over the image of the Chebyshev-Frobenius morphism (so over its center)
and (iii) for ¥ = (3,,,0) the PI-dimension of Sa(X) is N33t

4. (K. [Kor21]) For any marked surface then (i) the center of S}*4(X) is generated by the
image of the Chebyshev-Frobenius morphism together with the peripheral curves v, as-

soctated to inner punctures and the elements ozécl assoctated to boundary components

0 € m(0%). (it) both S4(X) and S¥UX) are finitely generated over the image of
the Chebyshev-Frobenius morphisms (so over their center). (iii) For ¥ = (X,,,A),
the Pl-dimension of S¢4(X) is N39—3+n+lAlL

5. (Lé-Yu [LYa): To appear) For any marked surfaces then (i) the center of S4(X%)
is generated by the image of the Chebyshev-Frobenius morphism together with the

peripheral curves 7, and the elements ,BéN’k) associated to even boundary components

and integers 1 < k < N — 1. (it) For ¥ = (¥,,,A), the Pl-dimension of S4(X)
is N 39—3+”e“e"+g(|“4|+”°dd), Where Nodd, Neven are the number of boundary components
with an odd and even number of boundary arcs respectively

Let A be a prime complex algebra which is finitely generated over its center Z and let
D its Pl-dimension. Write & := Specm(Z) and for x € X' corresponding to a maximal
ideal m, C Z, consider the finite dimensional algebra

Ar = A [m A
Definition 3.4. The Azumaya locus of A is the subset
AL(A) = {z € X|A, = Matp(C)},
where Matp(C) is the algebra of D x D matrices.

Note that any irreducible representation p : A — End(V) sends central elements to
scalar operators so admits a (unique) z € X such that m, A C ker(p). If z € AL, then
V is D dimensional. By a theorem of Posner, if x does not belong to the Azumaya locus,
then A, has PI-dimension strictly smaller than A, therefore any irreducible representation
p: A— End(V) inducing x has dimension dim(V') < D. So the Azumaya locus admits
the following alternative definition:

AL(A) = {z € X|z is induced by an irrep of maximal dimension D}.

Therefore, if p : A — End(V) is a D-dimensional central representation inducing = € X,
then p is irreducible if and only if z € AL. When A is prime, finitely generated and has
finite rank over its center, then AL(A) contains a Zariski open dense subset, therefore we
have the

Theorem 3.5. ([FKL19b] for unmarked surfaces, [Kor21] for marked surfaces) The Azu-
maya loci of S4(X) and S¥¢4(X) contain open dense subsets.



Notations 3.6. Let Z denote the center of S4(X) and write X(X) := Specm(Z) and
X(X) := Specm(S4+1(X)). The Chebyshev-Frobenius morphism induces a surjective finite
morphism 7 : X (%) — X(X). We also define a branched covering 7' : X™4(%) — X7°¢(x3)
associated to reduced stated skein algebras in the same manner.

Definition 3.7. The fully Azumaya locus is the subset FAL(X) C X(X) of elements
x such that all elements of 7'(z) belong to the Azumaya locus of S4(X). The fully
Azumaya locus FAL™(X) C X74(X) is defined similarly.

Since finite morphisms send closed sets to closed sets, Corollary 3.5 implies that the
fully Azumaya loci are dense.

Theorem 3.8. (Brown-Gordon [BG01, Corollary 2.7]) Let A be an affine prime C-algebra
finitely generated over its center Z and denote by D its Pl-dimension. Let R C Z be
a subalgebra such that Z if finitely generated as a R-module. Let M € AL(A) and
m:=MnNR. Then

A/mA = Matp (2 /mz) .
For z € X(X), set
SA(2), = Sa(X) /ChA(mm)gA(z).

In order to solve Problem 1.1, we need to classify all indecomposable modules of the finite
dimensional algebras S4(X),.
Let Z be the center of S4(X) and write

Z2(@) =2 [ Cham,)2.
For x € X™4(X), we define S74(X), and Z™%(z) similarly.
Corollary 3.9. Ifz € FAL(X) and D := PI—Dim(Sa(X)), then So(X%), = Matp(Z(z)).
Similarly, if v € FAL(X) and D' := PI—Dim(S4(X)), then S't4 (), = Matp (27 (x)).

Since the algebras Z(x) are easy to compute explicitly using Theorem 3.3, by putting
Corollary 3.5 and Theorem 3.9 together, we have solved Problem 1.1 generically, i.e. for
every classical shadows lying in the fully Azumaya locus. We need thus to solve the:

Problem 3.10. Compute the (fully) Azumaya loci of S4(X) and S3¢4(X).
Here is what is known concerning Problem 3.10:

Theorem 3.11. 1. (Brown-Goodearl :) The Azumaya locus of Sa(B) = O,[SLs] is
equal to the smooth locus. Therefore (Brown-Gordon [BG02a]), its fully Azumaya
locus is the set of non-diagonal matrices of SLy = X(B).

2. (Takenov [Tak, Theorem 15, Theorem 17]:) Takenov described explicitly two open
dense subsets O11 and Op4 which are included into the Azumaya loci of Sa(¥11)
and Sa(Xo.4) respectively.

3. (K. [Kor19aj:) The fully Azumaya locus of Sye4(IDy) is equal to the set of elements
(91,9-) € By x B_ = X"4Dy) such that g,g_" # +1,.
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4. (Bonahon-Wong [BW16b]:) For a closed surface, the central representations of Xsr,,(X,) =
X(X,,0) are not in the Azumaya locus.

5. (Ganev-Jordan-Safranov [GJSa]:) For a closed surface, the smooth locus of Xsi,,(X,)
1s included in the Azumaya locus. Moreover, for 2270, the Azumaya locus is equal to
the dense bad arcs leaf X°(3 ;).

6. (Consequence of Alekseev-Malkin [AM94]:) The open dense subset Doy is included
in the fully Azumaya locus of D} (SLy) = Sa(DY).

The open dense subsets X° (Zg,n) and Dgy will be defined in the next section. The last
two items of Theorem 3.11 are consequences of a more general theorem review in the next
section: by Brown-Gordon theory of Poisson orders, if X'(3) contains a symplectic leaf
which is dense, then it is included in the fully Azumaya locus. Let us make an obvious
remark: the quotient map S11(X) = S7$(X) induces an inclusion X™(¥) C X(X).

Lemma 3.12. For a connected marked surface 3 with non-trivial marking, then the leaf
Xred(X) C X(B) does not intersect the fully Azumaya locus of Sa(X).

Proof. This follows from the fact, proved in Theorem 3.3, that PI — Dim(S74(X%)) <
PI — Dim(S4(%)). O

4 Relative character varieties and Poisson orders

4.1 Deformation quantization and Poisson orders

Let A, be an associative unital C[¢*!]-algebra which is free and flat as a C[g™!]-module.
Consider the C algebra Ay = A; ®4—1 C and the C[[h]] algebra Ay = Ay ®g=exp(n) C[[1]].
We suppose that A;; is commutative. Fix B a basis of A,, so by flatness, B can be

also considered as a basis of A, and A;;. The basis B induces an isomorphism of C[[h]]-

modules U5 : A, w¢ C[[A]] = Ay, sending b € B to itself. Denote by  the pull-back in
A, ¢ Cl[h]] of the product in A;. Define a Poisson bracket {-,-} on Ay by the formula:

rxy—yxr=nh{z,y} (mod h?). (1)

We say that the algebra (A, ®¢ Cl[h]],*) is a deformation quantization of the Poisson
algebra (A,q,{-,-}). If B' is another basis, then U% o U5 is an algebra isomorphism
(A4 ®c C[[R)], *5) = (A1 ®c C[[A]], *5:) whose reduction modulo # is the identity: such
an isomorphism is called a gauge equivalence and it is clear that two gauge equivalent
star products induces the same Poisson bracket, in particular {-, -} is independent on the
choice of B. Note that when A, is reduced and finitely generated, Specm(Ay;) is a
Poisson variety.

Remark 4.1. If Uy Aé — Ag is an algebra morphism, it induces some morphisms
Uy : A} — A and ¥4y @ AL, — A3, Since U4 is the reduction modulo A of ¥y, it
follows from the definition of the Poisson bracket that ¥, is a Poisson morphism.

Ezample 4.2. Let E be a free finitely generated Z module and (+,-) : £ X E — Z a skew-
symmetric map and write E = (E, (-,-)). The quantum torus T,(E) is the algebra with
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underlying vector space the group algebra k[E] = Span{Z., e € E'} and product given by
Zy- Zy = ¢ @M Z,.,. Note that given e = (ey,...,e,) a basis of E, the quantum torus
T,(E) is isomorphic to the complex algebra generated by invertible elements Z;?l with
relations Z,, Z., = q2(ei’ef)EZej Ze,. Setting ¢ = exp(h), we see that

Zox Zy— Zyx Zy = (¢ — @) Zyy = H2(a,0) Zayy  (mod B2),

giving the Poisson bracket {Z,, Z,} = 2(a,b)Zy4p of X(E) := Specm(C[E]) = (C*)" so
T,(E) is a deformation quantization of the torus X'(E).

Definition 4.3. A Poisson order is a 4-uple (A, X', ¢, D) where:
1. A is an (associative, unital) affine C-algebra finitely generated over its center Z;
2. X is a Poisson affine C -variety;
3. ¢ : O[X] — Z a finite injective morphism of algebras;
4. D : O[X] — Der(A) : z+— D, a linear map such that for all f,g € O[X], we have

Di(¢(9)) = o({f,9})

Here is our main source of examples. Let A, a free flat affine C(g*')-algebra like
before, N > 1 and, writing ¢ := N(¢" — 1), the C(Qil)/(qN — 1) algebra Ay := Ay
and 7 : A; = Ay the quotient map. By fixing a basis B of A, by flatness we can define
a linear embedding - : Ay — A, sending a basis element b € 3 seen as element in Ay to
the same element b seen as an element in A,. Note that - is a left inverse for m. Suppose
that the algebra A,y = A, ®,=1 C is commutative and suppose there exists a central

embedding ¢ : A;; — Ay into the center of Ay. Write X := Specm(A41) and define
D: A,y — Der(Ay) by the formula

[6(x), 3]
D,y = — 7]
e (N (g™ —1)
Clearly D, is a derivation, is independent on the choice of the basis B and preserves
®(A41), so it defines a Poisson bracket {-, -}y on A4 by

Da¢(y) = ¢({z,y}n). (2)

So, writing X = Specm(A,4), then (Ay, X, ¢, D) is a Poisson order for this bracket.
Note that if (x is an N-th root of unity and A¢, = A, ©4=¢, C, we get a Poisson order
(A¢y, X, 0, D) as well simply by tensoring by C.

What is not clear is how to compare the above bracket {-,-}y with the one coming
from deformation quantization defined by Equation (1).

Example 4.4. Consider the quantum torus T,(E) of Example 4.2 and define the Frobenius
morphism Fry : T41(E) — Z(T¢y (E)) by Fry(Z.) := ZY. The preceding discussion



defines a Poisson order (T¢, (E), X¥(E), Fry, D). The Poisson bracket {-, -}x defined by
Equation (2) is computed as follows:

() (55

o qN2(a,b) o q—Nz(a,b) ZN
N(qN - 1) a+b

2N (a,b)
1 .
=7 q—N(a,b)N Z qu FTN(Za—O—b) = FTN(2(CL7 b)Za+b)‘
=1

So {Za, Zoyn = 2(a,b)Z,1p and the Poisson bracket {-, -}y coincides with the bracket
coming from deformation quantization.

Using the Chebyshev-Frobenius morphism, by the preceding discussion we have Poisson
orders (S4(X), X(%),Chy, D) and (S¢4(X), X"4(X), Chy, D) where we set ¢ := A2. To
prove that the two brackets coming from Equations (1) and (2) coincide, we can use the
quantum trace. A marked surface is triangulable if it can be obtained from a disjoint
union of triangles by gluing some pairs of edges. The data of the triangles plus the pairs
of glued edges is called a triangulation.

Theorem 4.5. 1. (Bonahon-Wong [BW11]) For (X, A) a triangulated marked surface,
there exists a quantum torus Ty(X,A), named the balanced Chekhov-Fock algebra,
and an embedding Tr® : SEYX) — T (X,A), named the quantum trace, such that
Tr® intertwines the actions of the Chebyshev-Frobenius morphism and the Frobenius
morphism.

2. (Lé-Yu [LYb]) Let ¥* be the marked surface obtained from X by gluing a triangle to
each boundary arc. Then there exists an embedding v : Sy(X) — SHZ*) commuting
with the Chebyshev-Frobenius morphism. In particular, by composition

TrA

Sa(3) = SEUET) == Ty(E", ),

we get an embedding of SA(X) into a quantum torus that intertwines the actions of
the Chebyshev-Frobenius morphism and the Frobenius morphism.

Lemma 4.6. The Poisson brackets of S11(X£) and S15H(X) coming from Equations (1)
and (2) are equal.

Proof. When X is triangulable, this follows from Theorem 4.5 and the computations in
4.2 and 4.4. For the bigon, this was proved by De Concini-Lyubashenko in [DCL94]. If
¥ = (X,,0,0) is a closed surface, consider the triangulable surface ' = (3,1, ) obtained
by removing an open disc. By functoriality, the embedding 3’ — 33 induces an algebra
morphism ¢ : S4(X') — Sa(X) which is clearly surjective. Let Z C S4(X) be the kernel of
¢ so that ¢ induces an isomorphism Sy (%) & Sa(X) /7. By [KQ19a, Proposition 2.18],
the ideal Z is generated by the elements [y] —[y'], where 7,7 are two closed curves in X4
such that ¢(7) and «(y’) are isotopic in Xy, so ¢ intertwines the Chebyshev-Frobenius
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morphisms. By Remark 4.1, the morphism ¢ : S11(¥’) — S41(X) preserves the Poisson
brackets coming from Equation (1) and (2) and we deduce that they are equal in Sy (%)
from the fact that they are equal in S;; ().

(]

Definition 4.7. Let G be an affine Lie group. A Poisson order (A, X, ¢, D) is said G-
equivariant if G acts on A by automorphism such that its action preserves ¢p(O[X]) C A
and such that it is D equivariant in the sense that for every g € G, z € O[X] and a € A,
one has

Dg~2(a) = gDz(g_la).

We now endow the previous Poisson orders with a structure of (C*)4-equivariant Pois-
son order. Let ¢ : O, [SLy] — C[X*!] be the surjective morphism defined by

plai-) =pla—1) =0, play) =X, gla—)=X""
The morphism ¢ is clearly a morphism of Hopf algebras and the induced morphism on
O[SLy] Cha, O,[SLs] is the diagonal embedding C* — SL, sending z to (Z(])V 29N>.
Note that, while identifying C[X*!] with the reduced algebra S’¢¢(B), then ¢ is just the
quotient map Ss(B) — S’¢¢(B). Define an algebraic action of (C*)# on S4(X) by the
co-action

. L ®AY)i
A9 S ,(8) 2 (0,[SLo)™) ® Sa(2) L2 X @ Su(D),
where AL is the comodule map obtained by composing the AL for all a (i.e. by gluing a
bigon to each boundary arc). The above action induces by quotient a similar action on
S'¢4(3) and both action preserve the image of the Chebyshev-Frobenius morphism. The
equivariance of D for this action is an immediate consequence of the definition of D.

Definition 4.8. Let X be a complex Poisson affine variety.

1. Define a first partition X = X°| |...| | X™ where X is the smooth locus of X and
for i = 0,...,n — 1, X" is the smooth locus of X \ X*. Each X' is a smooth
complex affine variety that can be seen as an analytic Poisson variety. Define an
equivalence relation ~ on X* by writing x ~ vy if there exists a finite sequence
T = po,p1,---,pk =y and functions ho, ..., hy_1 € O[X?] such that p;,; is obtained
from p; by deriving along the Hamiltonian flow of h;. Write X* = | ;X “J the orbits
of this relation. Note that the X%/ are analytic subvarieties: they are the biggest
connected smooth symplectic subvarieties of X*. The elements X of the (analytic)
partition X = U” X% are called the symplectic leaves of X.

2. Anideal T C O[X]is a Poisson ideal if {Z, O[X]} C Z. Since the sum of two Poisson
ideals is a Poisson ideal, every maximal ideal m C O[X] contains a unique maximal
Poisson ideal P(m) C m. Define an equivalence relation ~ on X = Specm(QO|[X]) by
m ~ m’ if P(m) = P(m’). The equivalence class of m is named its symplectic core
and denoted by C(m). The partition X = |_|me X C(m) is called the symplectic

cores partition of X.
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3. If moreover an algebraic Lie group G acts on X we call equivariant symplectic leaves
and equivariant symplectic cores the G orbits of the symplectic leaves and symplectic
cores respectively.

For x € X with symplectic leaf F(x) and symplectic core C'(z), C(z) is the smallest
algebraic set containing the analytic set F(z). For (A, X, ¢, D) a Poisson order and
r € X, write A, := A / p(m,)A- The main theorem of the theory of Poisson orders is

Theorem 4.9. (Brown-Gordon [BG03])

1. [BG03, Proposition 4.3]) For (A, X, ¢, D) a G-equivariant Poisson order, if x,y € X
belong to the same equivariant symplectic core then A, = A,.

2. [BG0O3, Proposition 3.6]) The (equivariant) symplectic leaves partition is a refinement
of the (equivariant) symplectic cores partition.

By putting Theorem 3.5 and Theorem 4.9 together, we obtain the

Corollary 4.10. If F C X(X) is a dense equivariant symplectic leaf (or a dense equiv-
ariant symplectic core) then F is included in the fully Azumaya locus.

Problem 4.11. Compute the equivariant symplectic leaves of X'(2) and X"4(X).
As we shall review, the problem was solved:
1. for closed surfaces by Goldman [Gol84];

2. for unmarked non-closed surfaces, independently by Fock-Rosly [FR99] and Guruprasad-
Huebschmann-Jeffrey-Weitsman [GHIJW97];

3. for the once-punctured monogon m; and D} by Alekseev-Malkin [AM94];
4. for the bigon, independently by Alekseev-Malkin [AM94] and Hodges-Levasseur [Hod93];

5. Ganev-Jordan-Safranov [GJSa] found an explicit open dense symplectic leaf in X' (X ),
for g > 1.

Let us first state a trivial, but useful result towards the resolution of this problem.
Consider an algebra A, as before and let z € A, be such that xA;, = Az, i.e. the left
and right (and bilateral) ideals generated by z coincide. Let I, = (z) C A, this ideal
and [ = I, ®,=1 C C Ayy. Since we have [I;, A;] C I, it follows from the definition of
the Poisson bracket that {I, A; 1} C I, i.e. that I is a Poisson ideal of A,;. Partition
the set X = Specm(A,;) into X = X°| | X! where X° is the open subset of z € X such
that x,(I) = 0 and X' its closed complement. Clearly each set X* is a disjoint union of

symplectic leaves, i.e. the partition into symplectic leaves is a refinement of the partition
X =X X1

Lemma 4.12. (Lé-Yu [LYb, Lemma 4.4.(a)]) Let p € P? be a boundary puncture and
a(p)_; € SA(X) its associated bad arc. For any [D,s] € B®", there exists n € Z such that
a(p)_4[D,s] = A"?[D, sla(p) 4. In particular a(p)_Sa(E) = Sa(X)a(p) ;.
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For £ : P? — {0,1}, denote by X©)(X) C X(X) the subset of these z € X (X) such
that x.(a(p)-+) = 0 if £(p) = 0 and xz(a(p)-+) # 0 else.

Definition 4.13. We call the bad arcs partition the partition X(X) =| ] X ().

Note that for ¢ = 0 (the map sending every p to 0), one has X0 (X) = X™(X) by
definition. By Lemma 4.12 and the preceding discussion, we obtain the

Lemma 4.14. The partition into equivariant symplectic cores is a refinement of the bad
arcs partition.

Let us state a second obvious remark towards the resolution of Problem 4.11. Recall
from Definition 3.2, that for each inner puncture p we defined a central element v, €
Sa(X) and for each boundary component 0, we defined an invertible central element
ap € SiU(D). Let Cas C S41(X) (resp. Cas™ € S7%4(X)) denote the subgroup generated
by the elements 7, (resp. by the elements 7,, agl). Since these elements are central in the
skein algebras with parameter A = exp(%/2), the elements in Cas and Cas™® are Casimir
elements, i.e. they are in the kernel of the Poisson bracket. Therefore, if we consider the
following Casimir partition

X = || An®), @)= || A

m:Cas—C :Cas™¢?C

where the 7 are characters over the Casimir groups and X, (%) is the (algebraic) subset
of elements x such that y,(c) = 7(c), for all ¢ € Cas and similarly for the reduced version,
then

Lemma 4.15. The partition into symplectic cores is a refinement of the Casimir partition.

Note that the group (C*)* preserves the Casimir leaves X(;)(X) but not the leaves
Xred(z)'

()
Lemma 4.16. If S'¢4(X) is commutative for A generic, then for every x € X4(X) =
X)), then the singleton {x} is a symplectic core of X(X).

Proof. Let 7% C 8§7¢%(X) be the ideal generated by the bad arcs. If S74(X) is commu-
tative for A = exp(h), then we have [Sy(X), Sy(2)] C 2%, so by definition of the Poisson
bracket we have {S,1(X),S41(X)} C Z%. Therefore the restriction of the Poisson bracket
to X7°4(X) vanishes. O

4.2 Relative character varieties

The Poisson variety X'(X) has a geometric interpretation that we now sketch and refer
to [Kor19b] for further details. Let V C ¥ be a finite set such that (1) V intersects each
boundary arc exactly once and (2) V intersects each connected component of ¥ at least
once. Let I1; (X, V) be the full subcategory of the fundamental groupoid IT; (X) generated
by V. The set of functors p : II;(X, V) — SLa, where we see SLy as a groupoid with one
element, forms the closed points of an affine variety Rgp,(3). Define the discrete gauge
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group G as the algebraic group of maps ¢g : V. — SLj such that g(v) = 1, if v € A. It acts
on Rgr, (%) by the formula

g-pla) = g(va)pla)g(v))™  for a:v; — vy, €I(X,V), g € G, p € Rar,(X).
The relative character variety is the GIT quotient:
XSL2<E) = RSLz (2) // g.

The relative character variety does not depend, up to canonical isomorphism, on V. If o
is an orientation of the boundary arcs of 3, the relative character variety has a structure
of Poisson affine variety, denoted Xsp,(X)°, whose Poisson bracket can be describe by
a generalized Goldman formula. Note that if ¥ is connected and A non empty, we can
choose V C A, in which case the group G is trivial. In this case, we easily see that
Xsp, (X) = (SLg)™ for some n > 1. In particular, the relative character variety is smooth
in that case.

Theorem 4.17. ([Bul97, Tur91] for unmarked surfaces, [KQ19a] for marked surfaces)
The Poisson varieties X(X) and Xsr,(X) are (non canonically) isomorphic.

When ¥ = (X,,0) is closed, choose V = {v} a singleton and Xs,, (X,) = Hom(m (3,4, v) —
SLy) / SLg. The action of SLy on Hom(m (X, v), SLy) by conjugacy is not free. We de-
compose the set of representations p : w1 (X, v) — SLs into three classes:

1. The central representations taking value in +1, and for which the stabilizer is SL,.

2. The diagonal representations which are conjugate to a non central representation
valued in the subgroup D C SLs of diagonal matrices and for which the stabilizer is
the group of diagonal matrices.

3. The irreducible representations for which the stabilizer is +15.

Denote by X§L2(Zg) the set of classes of irreducible, diagonal and central representations
when ¢ = 0,1,2 respectively. It follows from the work of Goldman [Gol84] that the
partition into symplectic leaves of Xgp,(3,) is simple: both X (3,) and Xg (3,) are
symplectic leaves and for every central representation r the singleton {[r]} is a symplectic
leaf. When g = 1, then XSOLZ(Zl) is empty and X§L2(El) is an open dense symplectic leaf,
so it is included in the Azumaya locus. As we shall see, since no central representation
belong to the Azumaya locus, then Xgj, (31) is equal to the Azumaya locus. For g > 2,
since the smooth locus XSOL2(ZQ) is symplectic, it is included in the Azumaya locus as
noticed by Ganev-Jordan-Safranov in [GJSa]. It remains the

Question 4.18. For g > 2, is the symplectic leaf X§L2(Zg) included in the Azumaya locus
of SA(EQ) ?

Note that one diagonal representation belong to the Azumaya locus if and only if all
of them do. Lé and Yu conjectured that the answer is no.

Let us consider the marked surfaces B, m;,D; and Df and write SLY = X(B),
SL5TS := X(m,), D(SLy) := X(D;) and D, (SLy) := X(D]). Both SLY and SL;**
are isomorphic to SLy but with two different Poisson structures. The Poisson structure
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of SLY endows SL, with a structure of Poisson-Lie group and was defined by Drinfel’d,
the Poisson structure of SL57 were defined by Semenov-Tian-Shansky and appeared in
the work of Alekseev-Malkin. Note that SL has four bad arcs leaves which correspond
to the double Bruhat cells of SLy whereas SL5”® has two bad arcs leaves, say SL) and
SL3 which correspond to the simple Bruhat cells of SLy. We denote by SL the open
dense cell. Note that both S7(B) and S7%(m;) are commutative, so by Lemma 4.16, if
g € SL, is diagonal, then the singleton {g} is a symplectic leaf of SL2 and if g € SL} the
singleton {g} is a symplectic leaf of SL57?.

Similarly, the two Poisson varieties D(SLy) and D, (SLs) (named Heisenberg doubles)
are isomorphic to SLy x SLg, though only D(SLy) is a Poisson Lie group, and both were
considered by Alekseev-Malkin. By extending the techniques of Semenov-Tian-Shansky,
Alekseev-Malkin proved

Theorem 4.19. 1. (Alekseev-Malkin [AM94, Theorem 2]) The four bad arcs leaves of
D, (SLy) are symplectic.

2. (Hodges-Levasseur [Hod93, Theorem B.2.1], Alekseev-Malkin [AM94, Section 4]) The
equivariant symplectic leaves of SLY are the double Bruhat cells of SLy (which cor-
respond to the bad arcs leaves of SLY).

3. (Alekseev-Malkin [AM94, Section 4]) The symplectic leaves of SL5™ are

(a) The leaves SLSNC, for C' a conjugacy class;
(b) the singletons {g} for g € SL3.

Note that one bad arc leaf, say Doy of D;(SLy) is dense, so Corollary 4.10 implies
that Dy is included in the Azumaya locus of S4(Df). Define an embedding m; — 22,0
by sending the underlying annulus of m; in a tubular neighborhood of the (unique)
boundary component of X9 and let 11y : Sa(my) — Sa(X) ) be the induced morphism.
Note that p, sends the unique bad arc of S4(my) to the unique bad arc of Sy(X ).
Let p : Xsr,(X9,) — SL5™® be the Poisson morphism induced by pi;. The bad arcs
decomposition write Xgr, (X9 ,) = X8, (20 ) U XL, (X9), where Xd (39 ) = " (SL3).

Theorem 4.20. (Ganev-Jordan-Safranov [GJSa, Theorem 2.14]) The open dense bad arc
leaf X3, (%9 ,) = 1Y (SLY) is symplectic.

So X, (33 ) is included in the Azumaya locus and by Lemma 3.12 it is equal to the
Azumaya locus.

5 Three families of representations

In addition to the general theorems cited above, there exist three families of representa-
tions of skein algebras which are powerful tools to solve Problem 1.1.
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5.1 Representations coming from modular TQFTs

The TQFTs defined by Witten and Reshetikhin-Turaev produces representations of skein
algebras for unmarked surfaces:

PV S4(5,) — End(Va(5,)).

The dimension of V4 (2,) is computed using the Verlinde formula, in particular Dim(Va(%,)) <

PI — Dim(S84(2,)). The following theorem was formulated for A a root of unity of even
order 2N, but its proof extends word-by-word to the odd case.

Theorem 5.1. 1. (Gelca-Uribe [GU10, Theorem 6.7/, see also [BW16b]) The represen-
tation pVET is irreducible.

2. (Bonahon-Wong [BW16b]) The classical shadow of p" BT is a central representation.

The identification X (X,) = Xsp,(X,) in Theorem 4.17 depends on a choice of spin
structure S and which central representation is the shadow of p"W 77" depends on this non
canonical choice. Let x € H'(S,;Z/27Z) = X3 (3,) be the classical shadow of p" #. For
X' € HY(,;Z/27), define a representation ' - pW 7 by x'- pW T (y) = (= 1)X (DD pWET (),
Then ' - p" T has classical shadow x + x’. In particular, every central representation
in X, (3,) is the classical shadow of an irreducible representation whose dimension is
strictly smaller than the PI-dimension of S4(X,) therefore:

Corollary 5.2. The locus X3 (X,) of central representations does not intersect the Azu-
maya locus of Sa(X,).

5.2 Representations coming from non semi-simple TQFTs

Blanchet, Costantino, Geer and Patureau-Mirand defined in [BCGP16] a new family of
TQFTs named non semi-simple because their algebraic input is no longer a modular
category but rather a so-called G-modular relative category (which is non semi-simple in
general) as described by De Renzi in [DR]. The categories giving rise to representations of
the Kauffman-bracket skein algebras are the categories of projective weight representations
of the unrolled quantum group 755[2 that we consider here at odd roots of unity. For
every cohomology class w € H'(Z,; C/Z), these TQFTs define some representations

PP 1 S4(8,) — End(Va(3,,w)).
When w € HY(X,; C/Z) \ H'(X,; Z/Z), these representations satisfy:
1. The dimension of V4 (X4, w) is equal to the PI-dimension of S4(X,).

BCGP

2. The classical shadow of p is the class of the diagonal representations r, :

m1(Xg,v) — SLy defined by

ws(ly]) [ exp(2imw 0
ro() = (=1l ”( P exp<—2m<m>>>’

where wg is the Johnson quadratic form of the spin structure S used in the identifi-
cation X'(X,) = X, (X,).
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Question 5.3. For w € HY(X,; C/Z)\H'(Z,; %Z/Z), is the representation pP¢G" irreducible
?

Clearly, solving Question 5.3 is equivalent to solving Question 4.18. At the au-
thor’s knowledge, not much is known concerning the representation pP¢“" when w €
H'(2y; 3Z/Z). The above two properties are expected to hold in that case too, in which
case Corollary 5.2 would imply that they are not irreducible.

Question 5.4. For w € H'(X,; 4Z/Z), what is the dimension of V4(Z,,w) ? Is the repre-

sentation pW &7 indecomposable ? Projective ? What is its classical shadow ?

5.3 Representations coming from quantum Teichmiiller theory

Recall from Theorem 4.5 the quantum trace Tr® : S¥4(X) — T,(X,A). De Concini
and Procesi proved that any quantum torus at roots of unity is Azumaya of constant
rank, so the isomorphism classes of irreducible representations of T,(%, A) are in 1-to-1
correspondance with the characters over the center of T,(3,A). Let r : Z,(X,A) —
End(V') an irreducible representation. Then the composition

pEV . STed(s) Uz (3, A) T End(V),

is called a quantum Teichmailler representation. This procedure permits to construct
representations of reduced stated skein algebras for triangulable surfaces. The quantum
trace embeds the center of §3°(X) into the center of T (X, A) so pPV is a central rep-
resentation. For each inner puncture p, one can define a central element H, € T (%, A)
such that tr2(y,) = H, + H,* (see [BW17] for the definition of H,). We can use this
construction to produce representations of skein algebras of closed surfaces as follows.
Let 3, , be obtained from », by removing n open discs. The inclusion ¥,,, C ¥, is an
embedding of marked surfaces and defines a morphism ¢ : S4(2,,,) = Sa(X,) which is
clearly surjective. Let Z C S4(X,,,) be the kernel of ¢. Let A be triangulation of (3, 0)
which is combinatoric in the sense that every edges has its two endpoints distinct. Let
r: Z,(3,A) — End(V) be an irreducible representations sending each central element
H,, to r(H,,) = —q 'idy and consider the subspace

V0= {veV| r(x)v=0vr eI}

The representation pP% = r o tr® : Sa(X,,) — End(V) induces via ¢ a representation
pPY 1 84(2,) — End(V?) which was studied in [BW19]. Here is what is known concerning
the representations p?".

Theorem 5.5. 1. (Bonahon-Wong [BW17, BW19] for unmarked surfaces, K.-Quesney
[KQ19b, Kor21] for marked surfaces) The dimension of pPW is equal to the PI-
dimension of ST () except maybe when X is closed of genus g > 2 and the shadow

is a central element in X3, (5,) in which case it is only known that the dimension
is < N3973,

2. ([BW17, BW19]) When X is closed, all elements of X1, (%) are the classical shadow
of a quantum Teichmiiller representation pPV. When X is not closed, the set of
shadows of representations pBW is dense.
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Question 5.6. 1. When X is not closed, which elements of X"°¢(3X) are the classical
shadows of quantum Teichmiiller representations ?

2. What is the dimension of p?" when ¥ is closed of genus g > 2 and the shadow is
central 7

3. If two quantum Teichmiiller representations induce the same character over the center
of §4(X), are they isomorphic 7

4. When are the representations p®" simple ? indecomposable ? projective ?

5. If pP" and pPCCr have the same classical shadow, are they isomorphic ? If the
shadow is central, is p" 7" a sub-representation of one of them ?

Question 5.6 was solved by the author in [Kor19a] for D,,.
Proposition 5.7. The following assertion are equivalent:

1. There exists a diagonal representation in Xleg(Eg) that belongs to the Azumaya locus

Of SA(ZQ);
2. All diagonal representations belong to the Azumaya locus of Sa(X,);

3. There exists a class w € HY(Sy;C/Z) \ H'(3; 3Z/Z) for which the representation

pBCEY coming from non semi simple TQFTs is irreducible;

4. For allw € HY(S,;C/Z) \ H'(S; 3Z/7Z), then p5°Y is irreducible;

w

5. There exists a quantum Teichmiiller representation pPW with classical shadow in
X4y, (Xg) which is irreducible;

6. All quantum Teichmiiller representations pP" with classical shadow in Xg (5,) are
irreducible.

BCGP

Moreover, if these assertions are true, then any two representation p and pPV having

the same diagonal classical shadow in Xg; (3,) are isomorphic.

Proof. The equivalence between the first two assertions follows from the fact that Xgp (3,)
is a symplectic leaf together with Theorem 4.9. The other equivalences follow from the
fact that both families of representations pP““" and pP" have dimension equal to the
PI-dimension of S4(%,). O

6 Reformulation of the representations classification problem

Call semi-weight representation of S4(X) a representation which is semi-simple as a mod-
ule over §;1(X) (through the Chebyshev-Frobenius morphism). An indecomposable semi-
weight representation p sends the elements of Sy1(3) to scalars operators so admits a
classical shadow [r] € X(X) and is a representation of the finite dimensional algebra
SA(X)py- Drozd classified finite dimensional algebras in three families:

Definition 6.1. A finite dimensional C algebra A is
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1. of finite representation type if it has a finite number of isomorphism classes of inde-
composable finite dimensional modules;

2. of tame representation type if it is not of finite representation type and if for every
d > 0, there exists a finite collection of A — C[X] bimodules My, ..., M, such that
any d-dimensional indecomposable A module is isomorphic to a module M; ® S for
S a simple C[X]-module.

3. of wild representation type if there exists a functor F': C(z,y) — Mod — A — Mod
that preserves indecomposability and isomorphism classes.

By Drozd’s Trichotomy theorem ([Dro79]) a finite dimensional algebra belongs to ex-
actly one of these families. Classifying the indecomposable representations of a wild
algebra is an undecidable problem (the word problem for finitely presented groups can be
embedded into that problem) so we need to reformulate our initial problem.

Problem 6.2. 1. Classify the equivariant symplectic leaves of Xgp,(X) (4.11);

2. For each leaf, choose a representative [r|] and determine the representation type of
Sa(X)py; in particular if [r] belongs to the fully Azumaya locus (which happens for
a dense leaf for instance), then Corollary 3.9 gives the answer;

3. If S4(X)} it is not wild, classify its indecomposable finite dimensional representa-
tions.

Of course, Problem 6.2 has an equivalent version for reduced stated skein algebras.
This problem was solved by Brown-Gordon for the bigon in [BG02a], by the author for
S7¢4(Dy) in [Kor19a] and can be deduced for ¥y and X ; from [HPO1].
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