On quantum character varieties of knots

Jun Murakami
Waseda University

INTRODUCTION

Quantum character varieties of knots are considered to be constructed from the skein
modules of the knot complements. Here, we start with the skein algebras of punctured
disks, apply the theory of Haboro’s bottom tangles to describe the braid group action, and
then, to get the quantum character variety of the knot complement, pick up the invariant
part of the action of the braid representing the knot . The actions of braids are given by
matrices and the quantum character variety is given by relations that the determinants
of certain matrices are equal to 0.

The first half is the reformulation of our previous work [4] presented in ILDT2020 [3].
Last time, the space of representation is constructed from a braided Hopf algebra, and
this time, such space is constructed by using the bottom tangles. The second half is the
construction of the quantum character variety of a knot by using the skein algebra of a
punctured disk combined with the action of bottom tangles. This is a joint work with
Roland van der Veen.

1. ALGEBRA OF FREE RIBBONS

1.1. Free ribbons. Let ¢ be an indeterminate and K be the field C(t). Let Dy be a
k-punctured disk, and ¢1, ..., ¢, are its puncture points. Let p; be a point in 0D, which
is called a puncture on the boundary of Dy, and pg is another point in dD;, which is
called the base point. The thickened Dy is Dy x I where I = [0,1] is the unit interval.
An open ribbon in the thickened Dj x I is non-intersecting framed arc in [ x Dy whose
boundary points are contained in py X I. A closed free ribbon is a closed framed loop
in the thickened Dy. A ribbon in the thickened D x I is presented by a diagram on Dj,
as in Figure 1 where the base point pgy is expressed by an arrow where the right hand
point represents the higher points of py x I. Such diagram is called the ribbon diagram.
Here the framing of a free ribbon is given by the black board framing, that is the framing
determined by the normal vector perpendicular to D directed upward with respect to
the orientation of Dy.

Forn=0,1,2, ... let Fj, be formal K-linear combinations of the set of isotopy classes
of thickened k-puncture disks equipped with non-intersecting closed ribbons, and let Fj 4
be the set of thickened k-puncture disks equipped with several or no non-intersecting
closed ribbons and n ribbon with boundaries. Inside the thickened k-puncture disk, we
require that there is no intersection of ribbons, and the labels ¢, . . ., ¢ of puncture points

are fixed. We call Fy,, the space of free ribbons.
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FIGURE 1. Free ribbons in thickened Ds.

The tensor product ® from Fy, 5, X Fryng t0 Fhythyny+n, 1S defined by concatenating
two punctured disks as in Figure 2.

k1 punctures ko punctures k1 + ko punctures
2 _ o - o
N
n, ribbons ny ribbons ny + ng ribbons

FIGURE 2. Tensor product & : Fi, ny X Fryno — Fhi+ko,ni+ns-

1.2. Algebra of free ribbons. We define a multiplication p from Fj, ,,, X Fg ny 10 Fionytns
by stacking two punctured disks as in Flgure 3. Let
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FIGURE 3. Multiplication p : Fipny X Frng — Fhng+ns-

Fi= B Fin:

then Fj is a graded algebra with the multiplication g whose grading is given by the
number of open ribbons.
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For Fj.1, we define another product m from Fi X Fi1 to Fr1. Let Fy, Fy be two
ribbon diagrams in Fj ;. Then m(F, F3) is obtained from p(F, Fy) by connecting the
upper end point of £} to the lower end point of F5.

2. ACTION OF BOTTOM TANGLES

2.1. Bottom tangles.

Definition 1. Let 7, be the subspace of F,, which consists of non-closed free arcs
~ = (71, , ) such that the heights of their end points i(~;(0)) and h(7;(1)) satisfy

h(11(1)) < h(m(0)) <h(12(1)) <--- <h(y(1)) < h(1(0)).
Then an element of Ty, is called a bottom tangle of type (k,n).

For T' € Ty and F' € Fy,, the composition T o F' € Fy,, is defined by glueing the
handles of F' to the ribbons of T as in Figure 4. This composition gives an algebra
structure in 7 and the action of 7y on Fi, gives a Ty, module structure on Fy,,.

FIGURE 4. The composition of a bottom tangle I" € T and an element I’ € F,,
of the algebra of free ribbons in the case k =n=/¢= 2.

2.2. Braided Hopf algebra structure of bottom tangles. A braided Hopf algebra
structure is given to bottom tangles by Habiro in [2] as in Figure 5. The operations in
the figure satisfies the axioms of the braided Hopf algebras. We define

L = id®(i_l) RQpu® id®(n_i_l), A; = id@(i—l) QRA® id®(n_i),
i = id®) @ @ id*" Y, g = id®0 ) @ e ®id®" D,
S; =id® ) 2 §; ® id®" Y, U, = id® D) @ U ® id®m—i-D,

The multiplication p of free ribbons is expressed as follows.

p= (- @ p) oWy 90 (Wop_g0 Wy 3)o0
——
k oo (UyoWso0---0W; )0 (VyoWgo---0Wy).
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FIGURE 5. Braided Hopf algebra structure of bottom tangles.

FIGURE 6. Bottom tangle expression of the adjoint action.

2.3. Adjoint and braided commutativity. We can define the adjoint ad as usual Hopf
algebra by the following.

ad = s oWyo(S®A)oA.

Then ad is interpreted as a element of 73, as in Figure 6.
Proposition 1. The adjoint satisfies the following relation.
p2o(ad ®id) = ps o Uy 0 (id @ ad) o U € Tas.

This relation is called the braided commutativity, which is crucial requirement for our
previous work to construct a representation space of a knot from a braided Hopf algebra,
which I presented this workshop of last year. In case of bottom tangles, the braided
commutativity holds automatically.

Proof. 1t is proved by using diagrams. See Figure 7. U

2.4. Flat bottom tangles. Here we introduce the notion of a flat bottom tangle and
see its properties.



po o (ad ® id) =

proWio(id®ad) ol =

FIGURE 7. Proof of the braided commutativity.

Definition 2. A tangle T' € 7y, is called a flat bottom tangle if T' is presented a diagram
without crossings. Let 7,%, be the subspace of Ty, spanned by all the flat bottom tangles
in Tin-

Proposition 2. The composition of two flat bottom tangles is a flat bottom tangle. So
the flat bottom tangles form a subcategory BY of B.

Proposition 3. Any element T of 7,5, commutes with the multiplication
I"l‘ : *Fn,ll ® fn,lg — ‘Fn,ll-i-lg'
Therefore, T" induces an algebra homomorphism from F, to Fy.

Proof. Let T be a flat bottom tangle. In the flat bottom tangle, the heights of ribbons
can be arranged at any order, so the ribbons of pu(F; ® Fy) can be separated so that the
ribbons coming from F} are lower than the ribbons coming from F3 as in Figure 8. In
Figure 8, such separation is used at the equality with . 0

2.5. Adjoint action. Here we define the adjoint action to bottom tangles.
Definition 3. Let Ad be the element in 7Tjq givern by
Ad = (id®* @ p) o (U ¥p_y - - Waady) o (U U,y - Ugady) o - - o (Upady_y) o ady
where ad; = id®( Y @ ad ® id®F—0),
The bottom tangle Ad is given by a flat bottom tangle as in Figure 9.
Proposition 4. The bottom tangle Ad commutes with any bottom tangle T' € Ty, i.e.
AdoT = (T ®id) o Ad.

Proof. Ad commutes with T" as in Figure 10. 0
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FicURE 8. Commutativity of p and a flat bottom tangle.
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F1GURE 9. The adjoint action Ad.

3. UNIVERSAL REPRESENTATION SPACE

3.1. Action of braids. The braid group By acts on the punctured disk Dy. Let o4, ...,
oj—1 be the standard generators of By twisting the i-th and (i + 1)-th strings. This action
permutes the punctures and fixes the boundary of Dy. The generator o; swaps ¢; and ¢;1
by rotating counterclockwise a small disk containing ¢; and ¢;,,. This action induces an
action of By to Fy, and the actions of o; and o; ! are given by the bottom tangles. For
two strings case, the twist o and o' are given by T, and 7,1 as ffollows.

T,= ps 0 Wy o (id ® ad),
T,-1= 1 0 \Iffl o \112—1 o \Iffl o S;l o (ad ® id).



FI1GURE 10. The adjoint action Ad commutes with 7" € 7T ,. The gray lines
represent bunches of strings.

For general case, the action of 07! is given by id®(~Y ® T,+1 ® id®™~~Y. Since T,, and

FIGURE 11. The bottom tangles corresponding ¢ and o~*

T -1 are both flat bottom tangles and any element b in B,, is a composition of al?tl, SO
the bottom tangle corresponding to the action of b is a flat bottom tangle. Therefore,
Proposition 3 implies the following.

Proposition 5. The action of braids in By on Fy is an algebra automorphism.
3.2. Ideals of F;,. Here we introduce a notion of ideal for F;.

Definition 4. Let b € By. The left ideal of Fj associated with b is a K-submodule
Image (po (id®* ® (T, —id®)), where po (id** & (T, —id®*) is a K-module homomorphism
from Fop to Fi. This submodule is denoted by [,. The right ideal of Fy. associated with
bis a k-submodule I} = Image(p o (T} — id®*) ® id®")).

Proposition 6. The left ideal I, is equal to the right ideal I} .

Proof. 1t suffices to show that p(((T} — id®*) ® id®*)(z)) € I, for x € Fyy. Since T} is a
flat bottom tangle, it is K-algebra homomorphism. Hence we have T, o u = po (T, @ T})
and

p(((Ty — id®") @ id**)(x))
= p((Ty ®id*")(x)) — p
= p((Ty ®id**)(z)) — p(T, @ Ty) () + p(T, © Tp)(z)) — p(z)
= —pn(Ty ® (T, — id®"))(2)) + (T} — id®") (p(z)).

Since the terms p((T, ® (T, — id®*))(z)) and (T, — id®*) (p(x)) are contained in Iy,
p(((Ty, — id®*) ® id®*)(z)) is also contained in I,,. O

x)
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3.3. Universal representation space. Let L be a link, b be a braid in By whose closure
is isotopic to L, and T; be the bottom tangle corresponding to b. Let I, be the ideal
generated by the image of T, — id®*, and A, be the quotient space Fj, /1.

Theorem 1. If the closures of two braids by and by are isotopic, then Ay, and Ay, are
1somorphic as graded rings.

Proof. The main idea is to show the isomorphism by using the Markov moves in Figure
12. The argument for the proof is similar to that for Theorem 2 in [4]. The detail of proof

is omitted. B
AT W
/ /
b s i ( o i (
MI: I «— 1] MIT : — PR
v b b b b
Lol Tl fenll il Tl T
bt b'b o, b b O';lb

FiGURE 12. Markov moves.

4. SKEIN ALGEBRAS OF PUNCTURED DISKS

4.1. Skein algebra S;. For the punctured disk Dy, we define the corresponding skein
algebra Sy as follows.

Definition 5. The skein module Sy ,, is defined by the following.
Sk,n - Fk,n/N

where ~ is generated by the following two relations.

\ v
Kauffman bracket skein relation : \ =1 +t!
VR

Boundary parallel relation : N\ | Po= | N\

The Kauffman bracket skein relation relations implies that

O:—(t2+t‘2), \F):—t?", lk'):—t—?".

The skein algebra Sy, is the direct sum of Sy, ,,, i.e. Sy = ©72(Skn. Since the relations for
~ are local and homogeneous relations, and the multiplication of Fj is just a stacking,
the multiplication g induces a multiplication in Sg. This multiplication gives the algebra
structure of Sy, and Sy, o is a subalgebra of S;,. Moreover, S, and S, ,, are both Sy, p-module.
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4.2. Standart triangular decomposition of D;. We first introduce a standard trian-
gular decomposition of Dy, which is given in Figure 13. Dy is decomposed into 2k — 1
triangles and the punctures pi, qi, ..., qx are vertices of triangles. Note that the base
point po is not a puncture and it is not a vertex. Bu cutting along the edges p.q;, we get

12 Y41 p P
D, D, Ds J@y Dm

q1

Po Do Po Po

FiGure 13. Standard decomposition of Dy.

a picture in Figure 14.

g3 p _
292 p\ /3 L .P1 ~ 9k —2

g2 f erLA2 {DP1 gr_1
g1 ) €3 64 ek fk— qk—1

fl €9 fk 1

Py e P
Po  p, an 9 [ 9k

41

g1

FIGURE 14. Developed standard triangulation of Dy,.

4.3. Flat basis of S;,. Any diagram in Fy,, can be represented as a K-linear combination
of diagrams without crossings in Sy, according to the Kauffman bracket skein relation.

S0, Sk, is spanned by the elements of 7;12 , which are flat bottom tangles.

Definition 6. A flat bottom tangle T is called reduced if there is no trivial loop and all
the boundary parallel ribbons are located at the left of the bottom arrow of the diagram.
Let 7,7¢* be the set of reduced flat bottom tangles in Ty,

Proposition 7. 7;’:2”1 s a basis of Sp,.
To prove the proposition, we need the following.

Proposition 8. Let T' be a triangle and S(T') be the skein algebra on T with an extra
relation that, if the diagram has an arc parallel to an edge, then this diagram is 0. Then
the basis of S(T') is given by Ty in Figure 15 where

(1) a,b,c>0, la—bl<c<a+b, a+b+ciseven.
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FIGURE 15. Basis Tj, . of S(T)).

Proof of Proposition 7. By the relations of the skein module, every element is expressed
as a linear combination of elements in 7;/¢". For T'in 7%, let us consider the set of
numbers of the intersection points with each edge, and the number of boundary parallel
ribbons. Then These numbers gives a partial grading to Sj,, and for each grading, there
is only one reduced flat bottom tangle having this grading by Proposition 8. This implies
the linear independence of elements in 7,7¢%. O

Corollary 1. Let d be the grading of Sk, given in the above proof and let Sﬁn 1s the span
of the elements in Sy ,, whose grading is equal to or less than d, thenwe have the following.

dim S¢,,/ <@ s,g;) <1
d'<d
The quotient space is spanned by at most one reduced flat bottom tangle.

4.4. Basis of §k70.

Definition 7. The skein module with t = —1 is called classical skein module, and the
skein algebra with ¢ = —1 is called classical skein algebra.

Proposition 9. Sy is a K algebra generated by t;,..;.. (j1 < -+ < jm,m < 3) given in

Figure 16.
Proof. For the classical case, it is proved by Bullok in [1]. The graded structure of Sk
given by the number of intersection points of edges are the same for generic ¢t and t = —1,
so it is true for generic ¢. O
Ji! ) J2 ) J2 J3
N\ ...f\@:::f\@... ...@:@:@m
ti b jo b1 ja 4

FIGURE 16. The generatros t;,...;,. (j1 < -+ < jm,m < 3).

The graded structure of Sy also provides the following.

Proposition 10. Sy s an integral domain.
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Let
gk,o = Sk,o[tj_ﬁ..jm] (1 < <Jmm < 3).

Then we have the following.

Proposition 11. §k70 is generated by t;..j1m (m < 3). Moreover, the set of monomials
of tj..jtm 15 a basis of Syyp.

This proposition is proved by looking at the grading. The detail is omitted.

4.5. Basis of gk,b Let
gk,l = §k70 D80 Sk,1
and

1= n@k oe, a; = n@(i—l) ® id ® n@(n—i)7 o g = m(ozl ® CVz)-

Proposition 12. 3171 s a §1,0 algebra spanned by 1, oy, and §k71 s a §k70 algebra spanned
by four elements 1, ay, as, a;as = m(a; ® as) if k > 2.

This proposition is also proved by looking at the grading. The detail is omitted.

Lo Mo\ /@ o [o B\ [QUD\

a1 Qg

FIGURE 17. The generators 1, a1, as, aj as of §k71.

4.6. Acﬁion Nof braids. Let L be a knot, b € By is a braid whose closure is isotopic to
L, and Ib = Sk70 ®Sk,0 Ib-

Definition 8. Let fb = §k70 ®5k70 (Ib/ N), /Ivbyn = §k70 ®5k70 (Ib N fk,n/ N), .Zb = gk/zg,
and Ay, = Skn/Ipn. We call A, the space of quantum SL(2) representations of L.

Proposition 13. The ideal fb,l is generated by Ty(ay) —aq, -+, Ty(ag—1) —ap_1 as a left
Sk.0-module.

Proof for this proposition is similar to that in [4].

Remark 1. By definition, E,J is generated by Ty(z) — x for all x € Fr;. But x = ay,
-+, ap_1 are good enough.
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5. QUANTUM CHARACTER VARIETY

5.1. The action of T}, —id on 52,0. From now on, we consider the case that the number
of punctures k = 2. Let b be a 2-braid and L be a link which is isotopic to the closure
b of b. The ideal I, is generated by the image of T, — id. So, if L is a knot, T,(t1) = ta,
Ty(ta) = t1, Tp(t12) = t12, and the action of T, — id gives a relation t; = t5 for ffbvo. If L is
a link, Ty (t1) = t1, Tp(ta) = to and Ty(t12) = t12, so the action of T, — id gives no relation
for 872,0. Let

7 gg 0/(t1 - tg) if l; is a kIlOt,

82,0 = { s

Sap if bis a two-component link.

5.2. The action of T, — id on ggl Recall that 821 has a K-algebra structure with
the product m. For the ideal Ib, Ibl = Ib N 821 and Ibl is also an ideal of 821 Ibl
is generated by (T}, — id)(ay) as a left ideal, and 8271 is generated by 1, oy, g, a1 s as
Sy o-module, the left ideal S, 1 is spanned by (T, —id) (v ), ay (Ty—id)(ay), og (T, —id)(on)
and ag g (T, — id)(aq) as an ggp-fﬂOdUle.

The braid group Bs is generated by a single element o and the action of T, is given by
T,() = ag and T, (an) = ay > ' oy ap. The multiplications of o and ay from the right in

QG (29) (BF) @D

)=ag aqay Tos(ag) =y al Lasanas

FIGURE 18. The action of o to aj.
§271 commute with the left multiplication of 5270 and are gg,o—module maps, so they are
given by the following matrices M;, M, with coefficients in Sy .
(17 Qy, Qig, 042) a1 = (1; aq, Qig, az) My,

(17 Qq, Qig, (1 Oég) Qo = (1 g, O, (1 O[Q) M27

where
0 1 0 0
—t? —t2t 0 0
My = —thtty — 0ty —t2ty  —t%t, —t* |
2t —t2 119 1 0
0 0 1 0
0 0 0 1
M = —t* 0 =ty 0

0 —t4 0 —t2ty

Let M, the matrix corresponding to the right action of (7, — id)(cy). Then M, is the
relation matrix of the Sy -module Sy 5 ®g ~Sa1/1y1. Therefore, the elementary ideals of
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the matrix corresponding to (7, — id)(ay) is invariants of the module 5570 ®3,, ggyl / Tb,l;
and so invariants of the link L. Especially, the determinant of M, is an invariant of L.
Let P, = det M,. Then P, is also an invariant of L.

Definition 9. The quantum character variety of L is the algebraic variety determined
by the radical of P, = 0, where P, is a polynomial in ¢; and t15 if L is a knot and is a
polynomial in ¢y, to, t15 if L is a two-component link.

Theorem 2. By putting A = —1, the quantum character variety reduces to a multiple of
the classical SL(2,C) character variety of L.

Proof. In the classical case,
(]-7 ay, G, ()42) Mb - (Oa Oa 07 0)

gives the relations among representation matrices of 1, a1, as and ay as. So, if the
determinant det M, # 0, then only 0 matrices can be assigned to such element. So, to
allow non-zero representation, det M, must be 0, so it is a multiple of the polynomial for
the classical SL(2,C) character variety. O

Remark 2. In the examples given below, the radical of det M, at ¢ = —1 coincide the
polyonomial for the classical SL(2,C) character variety.

6. EXAMPLES

6.1. Hopf link. The Hopf link H is isotopic to the closure of o2. Since T,2(ay) =
T,(az) = ag g a5 ', The matrix corresponding to (T2 —id)(ay) is Myt My Myt — M;. So
te quantum character variety of Hopf link is given by det(My ' My My — M;) = 0, which
is the following.
det(MQ_I M1 M2 — Ml) = t16 + t14t1t12t2
+ 20313, 00 — 201 1 — 2412, — 20125 4 4t
+ 10t 1oty + 0ttt + 0 tyatS — 50 tytaty
+ 5] + 31 — 41312 + 131, — 4153, + 1315 — 4315 + 618
+ 1%t ots + 0t oty + tOttats — 5totitiaty
+ T, + s — 2t + Mt — 2tMT, — 265 + At + Pttty + 1.
By substituting t = —1, we get a polynomial for the classical character variety with some
multiplicity.
(=4 + 15 4 13, + titatis + 5)°.
Moreover, by substituting t; =z + 1/, to =y + 1/y, t1o = 2+ 1/z, we have
det(M{l Ml MQ — Ml) =

peme (Pay+ 2)(xy +t22) (tPy +22) (y + P222) (o +y2) (0 + Pyz) (P + zyz) (1 + Pryz).
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and its classical version is

o (zy + 2)*(y + 22)*(z + y2)* (1 + zy2)*.

6.2. Trefoil. The trefoil is isotopic to the closure of 0% and Tys(ay) = ay ' ot s ay as.
So the quantum character variety is given by det(A, ' M, MyM; My — M), which is the
following.
det(My M7 MMy My — My) = 74 (1= 1 + 1% 4 2415 + 1015 + 1113,)°
(142t + 15 — 43 4 117 — 26715 — 20505 + 243t — 12 4 1582, + 1112,).
By substituting t = —1, we get the following classical one.
(14 t10)H (=2 4+ 13 + t12)°.
Moreover, by substituting ¢; = x + 1/z, t15 = z + 1/z, we have

(222 + 2) (2% + 22) (12 + 2%2) (1 + 2222) (t* + P2 + 22)% (1 + 122 + t*22)?,

tAatz6
and, by putting ¢ = —1, we have
1
W (I2 + Z>2(1 + $22>2(1 +z+ Z2>4.

6.3. Figure-eight knot. The figure-eight knot is given by a closure of 3-braid. But, by
using the method to reduce the representation space given in [4], the relation for the ideal
is given by MngMz_lMl_lMng_lMglMlMg — M,. This is similar to a presentation
of the fundamental group of the figure-eight knot complement. The determinant of this
matrix is the following. Here t; and ;5 is replaced by x + 1/x and z 4 1/z respectively.

det(My My My My My My My ' My My — My) =

312,10 (22 4 2) (2 + 22)(t* + 2°2) (1 + t22%2)
(822 + 152 4+ 30222 + t52%2 4 20% 2% + 5tta? 2 + 2t 2t 22 + 1227 4 3122728 4 120t 2P 2?t)?
(22 + 122+ 32022 + 20t 2 + 20427 + 51?2 F 2ttt 2 1023 4 300223 4 10218 182722,
6.4. 55 knot. The 55 knot is given by a closure of 3-braid. But, the relation for the ideal
is reduced as the figure-eight knot case, and is given by the matrix

My My My M My M My My Myt My My My My — M.

This is similar to a presentation of the fundamental group of the 53 knot complement. By
replacing ¢; and t1o by x + 1/ and z + 1/z respectively, the polynomial for the quantum
character variety is the following.

det( My My My M My My Mo My My My My My My — M) =
20,2011 (22 4 2) (2 + 22)(* + 2°2) (1 + t22°2)
(t"22* 4+ 2610222 + 5t02 2 + 20102082 4+ 1827 4 T182? 22 + 13180127 4 7182022 + 182822
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+ 2023 4106522 2% + 1702423 + 10t52°2° 4 282823
+tt2t Tt 13ttt Tttt Bt 4 207272 + 5%t + 2472020 + 220)?
(z* +26%2%2 + 5t%at 2 + 202202 + 127 + Tt 2?2 4 13t a2 + 1% + 2B
+ 2023 4 106522 2% + 17%2% 23 + 10152523 4 2%2823
+ 182 T8t 13832t 2 - T a0t 1808 2 4 24100225 500020 - 201020 2% #1204 20)2,
6.5. Observation. The examples of knots in the above computation satisfy the following.

Let Q(t1,t12) be the polynomial to determine the classical character variety. Then the
polynomial to determine the quantum character variety is given by

Qti,tz+t 127 H)Qt,t 2 +t271).
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