Studying knot invariants that count diagrams

David Leturcq®

1 Introduction

This survey presents some methods used to study knot invariants defined from
configuration space integrals. In Section 2, the main tools are presented on the
simple example of the linking number of two knots in R3. The most important
feature of this section is the definition of propagators, an example of which was
studied by Fukaya [3], and which were defined by Lescop in [4]. A detailed study
of the perturbative expansion of Chern-Simons theory based on propagators can
be found in [6]. Here, we focus on similar invariants, but for high-dimensional
knots R™ < M°, where n is odd, and M°® is a punctured homology (n + 2)-sphere.
In Section 3, we present the definition of generalized Bott-Cattaneo-Rossi (BCR)
invariants for such knots, as from our article [10]. These invariants generalize a
construction of Bott [1] and of Cattaneo and Rossi [2]. They admit an expression
in terms of Alexander polynomial(s), which is the result of [8]. The obtention
of such an expression relies on the use of specific propagators associated with the
knot. Section 4 contains some insights on possible extensions of these constructions
to other interesting objects, which are not knot invariants (i.e. 0-cocycles on the
space of knots) anymore, but cochains on the space of knots. We hope that such
constructions may lead to interesting cocycles. I thank the organizers of ILDT
for the opportunity to present these topics, and especially Tomotada Ohtsuki for
the invitation. I also thank Tadayuki Watanabe for his questions when I was in
Matsue at Summer 2019, and after my ILDT talk, which are the starting point of
some questions of Section 4.

2 Simplest example : the linking number

In this survey, all manifolds are smooth and oriented, and all maps are smooth.
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2.1 General definition

The most straightforward definition for the linking number is the following one.

Definition 2.1. Let X and Y be two chains of an n-manifold M such that
dim(X) + dim(Y) + 1 = n, and assume that X is null-homologous. Let Xy
be a chain of M with boundary X and assume that Y and > x are transverse. The
linking number is the algebraic intersection

k(X,)Y)=(Ex,Y)u
and does not depend of the choice of a surface X x as above.

In this section, we will describe some equivalent definitions of linking number
that "count" the diagram of Figure 1.

0-C

Figure 1: A diagram representing the linking number

2.2 Definition from Gauss map in R3

Let us now assume that M = R? and fix two disjoint knots .J, K : St < R3. Their
linking number is 1k(J, K) = lk(J(S'"), K(S')).
In this case, define the Gauss map
G: S'xSt — §?
K (u)—J (%)
(thw) = -
Now, we can define the degree of this map G with two methods.

Proposition 2.2. Letw be a 2-form on'S* with total area 1. The number [o1 g1 G*(w)
does not depend on w. It is called the degree deg(G) of G.

Proposition 2.3. For any choice of a reqular value v € S? of G,

deg(G) = > e(t,u),
(tu)eG1({a})

where €(t,u) is the sign of the determinant of the tangent map TiG in any two
oriented bases.
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With the notations of the previous subsection, the linking number admits an
equivalent definition, as follows.

Proposition 2.4. For any disjoint knots J and K of R3,
k(J, K) = deg(G).

In particular, Propositions 2.3 and 2.4 yield the following proposition, which
may be the most known definition of linking number for knots in R3.

Proposition 2.5. Let J and K be two disjoint knots of R3, and let fix a diagram
of the link JU K. Let n; (i € {1,...,4}) denote the number of crossings between
one strand of J and one strand of K as in the i-th picture below.

JXK JXK KXJ KXJ

The linking number is
k(J, K) =ng —ny =ng —ny.

The above property is the reason why such an invariant is considered as a
"diagram count'. Indeed, the formula allows us to interpret lk(J, K) as a signed
count of elements of J(S') x K(S') with some constraint on the direction of the
Gauss map. Here, the constraint on the direction is very easy to visualize, but it is
interesting to allow more flexible (and less visualizable) choices on the constraints
than the direction of the vector. This greater flexibility will serve two main goals:
dealing with other manifolds than the Euclidean spaces R™ (where the notion
of "direction" makes sense), and, most importantly, obtaining some formulas for
invariants using more appropriated constraints.

2.3 Definition in terms of propagators

Now, M is a general closed n-manifold, with the rational homology of an n-sphere.
Fix a point oo of M, and define M° as the manifold M \ {occ}. We identify a
punctured neighborhood of oo in M with the complement B of the unit ball in
R™ so that M° reads as B2, UB(M ), where B(M) replaces the unit ball. Such a M°
is called an asymptotic homology R™. The typical example is (M, M°) = (S™,R").

Definition 2.6. A parallelization 7 of M° is a trivialization 7: M° x R" — T M°
that coincides on B2 with the canonical trivialization of R". For such a paral-
lelization and = € M°, 7, denotes the isomorphism 7(z,-): R* — T, M°.
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Let C9(M°) denote the (non-compact) manifold M° x M° \ diag = {(z,y) €
Me x M° |z # y}.

Proposition 2.7. There exists a compact smooth manifold with boundary and
edges Co(M®) such that

e The interior of Co(M?) identifies canonically with C9(M®).
o Any parallelization T yields a smooth map G, : OCy(M®) — S*~1.

We refer to [5, Section 2.2] for more details on this construction. However, one
can get a rough idea of the construction from the following (partial) remarks.

e The codimension 1 boundary of the compactified configuration space Cy(M*°)
consists of three kinds of configurations : those where the two points x and
y coincide, but where we remember the local direction from x to y (which is
an element u of the unitary tangent bundle U, M°) ; those where one of the
points x and y is at oo, but where we remembered in which direction the
point at the infinity "escaped" (this is an element of UM, i.e. of S*7!); and
those where x and y both escaped to infinity, that we won’t detail here.

e The Gauss map G, maps a configuration (r,z) with direction u € U,M

to H:%i%” € S"7!. It maps a configuration with z at the infinity in the
direction u, (and y € M°) to —u,, and it maps a configuration with y at the
infinity in the direction w, (and x € M°) to +u,. Here, we do not give the

details when (x,y) = (00, 00) (See [5, Proposition 2.3].)
Now, we give two possible definitions of propagators.

Definition 2.8. A propagating form of (M° 1) is a closed (n — 1)-form £ on
C5(M?) such that Sjac, ey is G-*(w) for some (n — 1)-form w on "' with total
volume 1 such that (—Idgn—1)*(w) = (—1)"w.

A propagating chain of (M°,T) is a rational (n + 1)-chain B of Cy(M°) such
that OB reads 1G. ' ({—x, +x}) for some x € S" .

For any parallelized asymptotic homology R", propagating chains and forms
as above exist.
Example 2.9. When M° = R", the map G: (z.y) € CJ(R") — =15 € S"7 ex-
tends to Cy(R™), and its restriction to 0C,(R™) coincides with the Gauss map asso-
ciated with the canonical parellelization ([5, Lemma 2.2]). This provides canonical
examples of propagators : the form G*(w) for the SO(n)-invariant (n — 1)-form w
on S"~! with total volume 1, and the chains 3G~ ({—x, +z}) for z € S"~1.
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Propagators allow a more flexible definition of the linking number as follows.

([8, Lemma 2.22])

Proposition 2.10. Let (M°,7) be a parallelized asymptotic homology R™. Let 3
(resp. B) be a propagating form (resp. chain) of (M°, 7). Let X and Y be two
disjoint cycles with dim(X) + dim(Y) =n — 1.

(X Y) = [ By = (X XY, Byosre.

2.4 Last notes

The goal of the above section was to illustrate the following idea: starting with
an embedding (here, two disjoint knots) and a diagram (here, an edge between
two points), we can define a configuration space (here, the product of the two
knots). Using propagating forms, we can define a form on the configuration space
(here, simply by restriction) and thus a configuration space integral. Equivalently,
from propagating chains, we can define an algebraic diagram count (here, the
intersection of the propagating chain with the product of knots). In the above
example, these two methods yield an invariant, which is the linking number. In
general, things are more complicated, and we have to combine more diagrams to
get some invariants. The interested reader can refer to [6] for a detailed study of
the general 3-dimensional invariant obtained from all these diagram counts, which
is valued in some Hopf algebra of diagrams. In the remaining of this survey, we
will focus on similar (but numerical) invariants for high-dimensional knots.

3 High-dimensional invariants from diagram counts

3.1 BCR diagrams

In this section, a diagram is an oriented graph I" without looped edge® such that the
set V(') of vertices (resp. E(I') of edges) is decomposed as V(I') = V;(T") U V,(T")
(resp. E(I') = E;(I') U E.(I')). The elements of V;(I") are called internal vertices,
and those of V,(I') are called external vertices. Similarly, elements of E;(I') are
called internal edges, and elements of E.(I') are called external edges. On the
figures, internal vertices are full red dots, external vertices are empty blue dots
(i.e. blue circles), internal edges are solid red arrows, and external edges and
dashed blue arrows.

Definition 3.1. A BCR diagram is a diagram as above such that

L A looped edge is an edge from one vertex to itself.
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e ['is connected,
e any trivalent vertex is adjacent to one univalent vertex,

e any vertex is as in Figure 2.
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Figure 2: The five possible behaviors near a vertex of a BCR diagram
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The definition of BCR diagrams implies that Card(E(I")) = Card(V(I")), and
thus that their first Betti number is one. The degree of a BCR diagram is half its
number of vertices, and is indeed an integer.
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Figure 3: A BCR diagram of degree 6

3.2 Configuration spaces

Let M° be a fixed asymptotic homology R"*2. A long knot of M° is an embedding
t: R™ < M° such that, for any x € R, if ||z|| > 1, then ¢(z) = (0,0,2) € B, C
M?°. Fix a long knot ¢. For any diagram I', define the configuration space

Cr(¢) = {c: V(I') = M°® | There exists a map ¢;: V;(I') = R", cjy;r) = 9 0 ¢;}.

The above configuration space does not depend on the edges of I', but only on
the set V(I") and its partition into internal and external vertices. Edges correspond
to maps from this configuration space to two-point configuration spaces as follows.
Let e be an edge of I' from v to w. If e is internal, set

pe: Cr(v) — Cy(R™)
c = (¢i(v), ¢(w))

6
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and, if e is external, set

3.3 Configuration space integrals

Assume n is odd. Fix

e an integer k > 2,

a parallelization 7 of M° as in Definition 2.6,

a family F' = (g, 5;)1<i<2k such that for any 4, «; is a propagating form of R"
with its canonical parallelization, and f; is a propagating form of (M°, 1),

a degree k BCR diagram T,

a bijection o between E(I") and {1,...,2k}, (Such a o is called a numbering
of T').

Define for any edge the form

wr(l,o,e) = P (ao(e)) %f e %S internal,
P (Bo(ey) if e is external,

and set wp(I',o0) = A wp(l,0,€). The latter is a form on Cr(2)).
ecE(T)

The definition of BCR diagrams implies that deg(wp(I',0)) = dim(Cr(v)).
The integral [c,.() wr(T, o) converges.? Set

I'o :/ wr(l, o).
(T, 0)py ) r(l,0)

3.4 BCR invariants

Let Gy, denote the set of degree k BCR diagrams I' together with a numbering
o, up to isomorphisms that preserve the nature of edges and vertices and the

numberings. Set
1
Z;f(w):m > (L,0)ry

" (Io)€Gk

2Details on orientation of Cr (1)) can be found in [10, Section 2.4].
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Theorem 3.2. The real number ZL (1)) depend neither on the choice of the family
of propagators F, nor of the choice of the parallelization . It is invariant under
ambient diffeomorphism : if ® is a diffeomorphism of M° that fizes BS, pointwise,
then ZE(® o) = ZF ().

We call Zy,(1) = ZF (1) the degree k generalized BCR invariant of 1.

The above result is [10, Theorem 2.10] for n > 3, and follows from [7, Corollary
2.15] for n = 1. The above definition of (generalized) BCR invariant directly
generalizes the original definitions of Bott [1] for k& = 2, and of Cattaneo and Rossi
2], which are the case where M° is R""? with its canonical parallelization and
where propagators are given by the forms of Example 2.9.

3.5 BCR invariants from diagram counts

Fix the same setting as in the previous sections, but replace F' with a family
F = (A, Bi)i1<i<or, where for any i, A; is a propagating chain of R" with its
canonical parallelization and B; is a propagating chain of (M°, 7).

Now, for any edge e, set

pe ' (Ase)) if e is internal,

DF(P,O', 6) = {

pe ' (Bgyey) if € is external,

which defines a chain of Cp(2)).
For a generic® choice of F, the chains (Dp(I', 0,€))ccpr) are transverse. The
diagram count of (T, o) for F' is their algebraic intersection number Ix(T', o).

The following theorem is derived from the previous one by duality, as explained
in [10, Section 4].

Theorem 3.3. For a generic choice of propagating chains F, the diagram counts
Ir(T,0) are well-defined for any degree k numbered BCR diagram (T, o), and the
generalized BCR invariant of Theorem 3.2 is

1
Zi(¥) = @n) (Faz)i@ In(T o).

3.6 Computation of BCR invariants

One of the strength of the previous construction is that we can compute BCR
invariants using any set of propagators. In [8, Section 6], we describe a specific
construction of propagating chains associated with some long knots.

3See [10, Section 4] for details.
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Definition 3.4. A long knot v of M°® is rectifiable if we can choose a parallelization
7 of M° such that for any z,u € R", 7y;)(0,0,u) = Tptp(u).

[8, Theorem 2.33] gives the following formula for BCR invariants of rectifiable
knots, in terms of Alexander polynomials .

Theorem 3.5. Let i be a rectifiable long knot, then
Y- Zi(h)h* =3 (=1)"Ln(Agy(e")),
k=2 d=1

where Ay denotes the d-th Alezander polynomial of 1-dimensional knots.

The above formula extends a result of Watanabe [13] for the particular class
of ribbon long knots, and lifts some indeterminacies that remained in the relation
between Alexander polynomials and BCR invariants. In [8, Section 5|, we prove
that all long knots are rectifiable up to connected sum with a finite number of
copies of themselves when n = 1 mod 4. This implies that the above formula
extends to all long knots when n = 1 mod 4. For n = 1, the result extends as
follows, where asymptotic rational homology R? are punctured rational homology
3-spheres.

Corollary 3.6. Whenn =1, for any null-homologous long knot ¢ of a asymptotic
rational homology R3?,

S~ Zuu)ht = ~Ln(A(H),

where Ay, denotes the Alexander polynomial of 1-dimensional knots.

4 Insights

Many open questions naturally arise from the above construction. The case of
even-dimensional knots will be soon covered by [9]: the invariants are well-defined,
when we restrict to parallelizable asymptotic homology R"*2, and only use par-
allelizations such that 7,;)(0,0,u) = Ty (u) for any x,u € R". The formula
in terms of Alexander polynomials of Theorem 3.5 still holds, up to some signs.
In this last section, we give some ideas on a possible extension of the previous
construction to more general diagrams, which are still a work in progress.

Let T" be a diagram with vertices as in Figure 2. We do not assume anymore
that " is connected, nor that trivalent vertices always have one univalent neighbor.

4These Alexander polynomials are defined using Alexander invariants from Levine [11]. For
n =1, Ay y is the usual Alexander polynomial of 1-dimensional knots.
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Let 0 be a bijection E(T") — {1,...,Card(E(I"))}. Let F' = (o, Bi)i<i<card(B()
be a family of propagating forms as in Section 3.3. If the first Betti number of "
is greater than one, then the differential form wpg(I", o) have degree greater than
the dimension of C (). More precisely,

deg(wr (', ) = dim(Cr(1)) + (n = 1)(02(T') = 1).

Thus, the configuration space integral is a cochain I(I',o0) of degree (n —
1)(b1(I") — 1) on the space K of long embeddings R" < M°. Let Gy, denote the
set of numbered diagrams (I', o) with deg(I') = k£ and b;(I") = b, up to numbered
diagram isomorphisms. Define the cochain

Zk,b = Z I(F7 0)[F]7

(,0)€Gk,p

which takes its values inside the vector space Dy, spanned by degree k diagrams
with first Betti number b. Given a quotient 7: Dy — Ay of Dy, we can form
the cochain 7 o Zj.

Note that Zj; is a O-cochain, and there exists a quotient mx1: Dx1 — A
such that A, is 1-dimensional, and such that 71 o Z; identifies with Z. Since
the last expression is a knot invariant, the 0-cochain 7 o Z; ; is a O-cocycle. Thus,
it is natural to ask the following questions.

Questions 4.1. For any (k,b), does there exist a non-trivial quotient 7y ,: Dy —
Ay such that 7, 0 Zyp is an (n — 1)(b — 1)-cocycle on the space K 7 (Such a
quotient could be defined from linear relations between similar diagrams.)

Does these cocycles yield any non-trivial class in D=1 () ?

Does the obtained class in cohomology depend on the choice of propagating
forms ?

Can we describe the obtained cocycles in terms of simpler objects on the space
of knots 7

Following a study of Sakai and Watanabe [12], we can also extend the study
of such invariants to long embeddings R/ — R"™ without the "codimension 2"
hypothesis. In their article, they proved the existence of relations on diagrams
with by(I') = 1 that yield a quotient 7: Dy; — Aj such that 2z, = mo Z;; is
indeed a (n — j — 2)k-coycle of the space of long embeddings R? — R", when one
of the three following properties holds:

e 1 is odd,
e n is even, j is odd, and k < 4

e niseven, n > 12, j = 3.

10
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Moreover, they proved that some of the obtained cocycles were non-trivial. Fol-
lowing a question of Watanabe after the ILDT talk that preceded this proceeding,
we can look for interesting formulas for this cocycle z;, that could be derived from
a method similar to the one that allowed us to compute the BCR invariants in

Theorem 3.5.
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