SPECTRAL SHIFT FUNCTION AND RESONANCES FOR THE
SCHRODINGER OPERATOR WITH NON-DECAYING POTENTIALS

MOUEZ DIMASSI

1. INTRODUCTION

This is a survey of some old and new results of the author. Some of them will be published
elswhere. Consider the Schrédinger operators in L?(R™)

(1.1) Hj(h) = —h*A+Vj(z), j=1,2,

where h is a small parameter and Vi, V5 are real-valued bounded smooth potentials with differ-
ence Va(x) — Vi(z) of order O(|x|™") as |x| — oo for some p > n. The spectral shift function
(SSF for short) corresponting to the operators (Ha(h), Hi(h)) is defined as a distribution,
&(A h), on Ry by the relation

(1.2) (€(,h), f) = —tr (f(Ha(h)) — f(H1(h))), Vf € C°(R; R),
with a normalization condition £(A, h) = 0 for A < inf (U(Hl(h)) Ua(Hg(h))). The SSF plays

an important role in perturbation theory for self-adjoint operators. When f(Hi(h)) = 0, it
coincides with the eigenvalue counting function of Hs for A € supp f. It was introduced in a
special case by I. Lifshitz [22] and generalized by M. Krein in [20]. The background of the
SSF theory can be found in [34].

In the last thirty years, the asymptotic behavior of the SSF of the Schrodinger operator
with a long-range or short-range potential has intensively been studied in different aspects. In
the semi-classical regime, h \ 0, the Weyl type asymptotics of £(-, h) with sharp remainder
estimate has been obtained (see [7, 8, 30] and the references given therein). On the other hand,
a complete asymptotic expansion in powers of h of £(-, h) has been obtained for non-trapping
energies A (see [4, 5, 6, 30, 32]) i.e. for energies at which any hamiltonian flow of the underlying
classical mechanics tends to co as time tends to o0o. Similar results are well-known for the
SSF in the high energy regime, h = 1 and A\ — oo (see [7, 8, 25, 28, 30, 31, 32]). In [31, 32],
it was established that the leading terms of the asymptotic behavior of £(\,1) as A — 400
only depends on the average value of Vo — V;. The proof of all the above results follows from
a beautiful local trace formula in the configuration space due to D. Robert (see Theorem 1.10
in [32]). However, the proof of this local trace formula, based on the construction of a long
time parametrix for time-dependent Schrodinger equation, involves the decay assumptions for
both potentials V7 and V5.

The relation between the asymptotics of the SSF and resonances was first investigated by R.
Melrose [24], and then by many authors with successive extensions (see [26] and the references
given therein). All these works use the scattering theory. In [33], J. Sjostrand proposed a new
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approach based on the complex scaling of operators. The scattering determinant is replaced
by D(z,h) = det(I + K(z,h)), where K(z,h) is a trace class operator whose zeros are the
resonances (see section 4). Applying this approach, V. Bruneau and V. Petkov established
in [4] a representation of the derivative of SSF as a sum of harmonic measures related to
resonances.

There are only few works treating the SSF of the Schrodinger operator with non-decaying
potentials, such as those homogeneous of degree zero, periodic or even of logarithmic decay.

In [9], the first author established a trace formula relating the SSF and the resonances of
the periodic Schrodinger operator with slowly varying perturbation W (hx). Using the Peierls
substitution method, he reduced the spectral study of the perturbed operator to the study of
the semiclassical operator E(hD,) + W (x) for a band function E(k) describing the Floquet
spectrum of the non-perturbed operator. Unfortunately, this method fails at high energy,
since the band functions are not smooth due to the degeneracy of the Floquet eigenvalues.

The spectral and scattering theory for Schrédinger operator with a homogeneous potential
of degree zero was investigated in [14] (see also [15] and the references there). The asymp-
totics of the number of eigenvalues for a perturbation of such an operator below the essectial
spectrum was studied in [29]. To our best knowledge, the SSF has not been treated.

The aim of this paper is to fill this gap. We consider Schrodinger operators with non
decaying potentials including in particular homogeneous ones of degree zero.

In the first sections, we study the high energy asymptotics of the SSF. In section 2, we
compute the trace formulas (Theorem 2.1) and the explicit coefficients of all order of the
weak asymptotic expansion in powers of A~! of &(A,1) as A — oo (Corollary 2.2). The
k-th coefficient is given by the integral of the difference of a polynomial of degree k with
respect to the potential and its derivatives as suggested in [31, 32]. For this we only use a
standard pseudodifferential calculus combined with some commutator formulas for Hy = —A
(see section 6 for the proof, and also [23, 27]).

In section 3, we give a strong sense to this expansion for potentials homogeneous of degree
zero, or those analytic and bounded in a complex sector at infinity (Corollary 3.3). For such
a potential V', say for homogeneous one, the operator H = —A + V() is unitarily equivalent
to Hy := UpHU_y = —e 2 A + V(x), where U(0) f(z) = e"/?f(ez) is a dilation operator
in L2(R") for real §. The operator —e 2’A + V() is analytic for § € C. The uniqueness
of analytic continuation implies the invariance of the SSF under complex dilation. Since
the resolvent is continued analytically to the lower half plane after a complex dilation with
36 > 0, a representation formula of & in terms of the resolvent (Lemma 3.4) enables us to
show the analyticity and a polynomial estimate of & as well as its derivatives (Theorem 3.2).
It is now classical to deduce the strong full asymptotic expansion from the weak one using
these estimates and Lemma 3.5.

Next we study the semiclassical asymptotics. We will restrict our attention to potentials
V' homogeneous of degree zero at infinity (i.e., there exists W independent of |z| such that
|[V(xz) — W(z)] — 0 as |z| — o0). The essential spectrum of UpH (h)U_gp is the union of the
semi-axis t + e 2R over ¢ in the range W (S~ 1), a band in the lower half plane intersecting
with R on W (S™"~!) when $6 > 0. In section 4, we consider the SSF for A above the range
W (S"~1), and generalize the result of V. Bruneau and V. Petkov [5] proving a representation
of (A, h) in terms of the resonances (Theorem 4.1). We apply this result to establish a
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Weyl-type formula for the SSF with optimal remainder estimate O(h'~™). Moreover, under
resonance free domain condition, we give a complete asymptotic expansion of £'(\, h).

Finally, in section 5, we consider A in the range W (S"~!) and prove a semi-classical Mourre
estimate away from critical values of Wgn-1. This is a semiclassical version of S. Agmon,
J. C.-Sampedro and I. Herbst [1] (Appendix C). The proof is based on a construction of an
escape function for Schrodinger operators adapted to a homogeneous potential.

Notations: Throughout this paper, h is an asymptotic positive parameter going to zero.
We use f, = O(hY) to denote an h-dependent function that is bounded in magnitude by an
expression Cyh!V, where the implied constant Cy is independent of h but may depend on
parameters independent of h. Similarly, we use fr = O(h*°) or f; = 0 to denote the estimate
|f| < CnhYN for every N. For any quantity a; defined for each j = 1,2 concerning H;, we
sometimes denote their difference as — a1 by [a.]3.

2. WEAK ASYMPTOTICS

In this and the next sections, we study the high-energy asymptotics of £(\) = (A, 1). Let
H;y, Hy denote the operators (1.1) with A = 1 with potentials satisfying

(A1) Vj are real-valued smooth functions and there exists p > n such that for all & € N"
(2.1) 0yVi(x) =0(1), j=1,2, 0y (Va(z) —Vi(x)) = O(|z|™?) as |z| = oo.

The following result follows from the standard h-pseudodifferential operators calculus (see
chapters 7-8 in [11]).

Theorem 2.1. Assume (A1l). Then the following full asymptotic expansion holds as h \,0:
(2.2) tr [f(h2H)]] ~ i ci(f) W2k,
k=1
for every f € C§°(]0, +oo[; R), with
23) ) = gasss [ 1902 [ P
Here kg is the measure of the unit ball in R™, and

Pi(z) = [V]:=Va— Vi, Pi(e) = [Pe({DV}aj<ar-a)]? for k > 2,

where Pj is a universal polynomial of degree j. In particular,
1
(2.4) Py=V?% Py=V3— 5VAV,
4, 3 A2 4.0 2 2y, 2 2
(2.5) Py=V*+ 3VA (V) + BV (AV) — 3VA(V )+ 5V|VV| .

For f in C§°(]0, +0o0]), a change of variable and integration by parts yield

(2.6) / FO ) tdr = (_2 —r(gzk) /_Oof(A)Ag‘k‘ldA,

with the convention that I'(—m)~! = 0 for m € N:= {0, 1,...}, and hence
(2.7) cr(f) = —ar\2 7L f),
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where

(=D nre  T(3)

(2.8) i Zwk/npk(l’)d“f’ B TGS N

k)

On the other hand, from (1.2) we have

tr [f(h?H)]; = —/

—00

+00 1 .
/ 2 - _ N .
As a consequence of Theorem 2.1 and (2.7), we have the weak asymptotics of () as A — +oc.

Corollary 2.2. For X large enough, the asymptotic expansion
[e.e]

(2.9) €N~ ap Az
k=1

holds in the sense of distribution, where ay are given by (2.8). In particular, modulo O(A~%°),
¢'(N) is a polynomial of degree § — 2 when n > 4 is even.

3. HIGH ENERGY ASYMPTOTICS

In this section, we suppose the following analyticity condition in addition to (A1) that

(A2) There exist ¢ > 0 such that the functions : (6,z) 3] — ¢, c[xR® — V;(e?z), j = 1,2
have an analytic extention on # to a complex disk D(c) := {0 € C,|0| < ¢}, and the
estimate (2.1) holds for x — V;(e’x) uniformly for all § € D(c).

Remark 3.1. The above condition can be relaxed. In fact, it suffices to assume that : 0 —
Vi(’z), has an analytic extension on 0 € D(c) uniformly for |z| > C. In that case we have
to use in the proof of the below results the distortion analytic method. Here, the condition
(A2) allows us to use the dilation analytic method which is more simpler for the exposition.

Our main results of this section are the followings :

Theorem 3.2. Under (A1) and (A2), there exists Ao such that £(\) is an analytic function
in | Ao, +o0o[ and for every N € N there exists Cn such that for m > n/2 we have

(3.1) €M) < Cyam L
uniformly for X € [Ao, +o0].

Corollary 3.3. Under (A1) and (A2), we have for every integer N

N
(3.2) lim AN+1-3 [5’()\) - A%—’H} —0,
k=1

A—400

where the coefficients ay, are given by (2.8).
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3.1. Proof of Theorem 3.2. Let H;, j = 1,2 be two operators satisfying (A2). Fix an
2
integer m > n/2 so that the operator G(z) := [(z —H;)"Y(H; - zo)_m} ) is of trace class (we
recall the notation [a;]3 = a2 — a1). To see this, we write
2
(33) G(2) = ((2 = Hy) ™" = (2= Hy) ™) (Hy— 20) ™ + (2 — Hy) " [(Hj - zo)—m} = I+IL

The condition (2.1) implies that (Vo—V7)(Hz—20) ™" is of trace class for m > n/2. Therefore,
I=(2—Hy) ' (Vo — Vi) (Hy—29)"™(2— H2)~! is of trace class. Now, the m— 1-th derivatives
of the resolvent identity implies that (zo — H1)™"™ — (20 — H2) ™™ is a linear combination of
terms of the form (2o — Hy) (Vo — V1)(20 — Ha)~(mT179) with 1 < j < m. This shows that
IT is also of trace class.

Let zp be in p(H1) N p(H2) NR and introduce the function
(3.4) oi(2) = (2 — zo)mtr[(z _H) YH - zo)—m} ? £32 > 0.
First, we give a representation formula of £'(\) in terms of o .
Lemma 3.4. In the sense of distribution, we have
g0 = %%mx +i0).

More precisely, for all f € C§°(R), we have

€. n —hm /f(/\ Sop (A +ie)dA

where the limit is taken in the sense of distribution.

Proof. Let f € C3°(R) and let f € C§°(C) be an almost analytic extension of f. According
to the formula (??), we have

(35)  tr [f(H.)ﬁ - —% /@f(z)(z — 2)™ x tr[(H. ~ ) ™2 — H.)_lﬁL(dz).

Since we have o+ (z) = O(|S2| ™) and 9, f = O(|S2|*), we may write the right hand side of
the above identity as

€ f) = —tr [ f(H.)r — lim 1( /3 N 8. f(2)o4 (2 +ie) L(dz) + L » 8, f(z)a_(z—ie)L(dz)).

1 e\0 T

The function o4 (z + i€) (resp. o_(z — i€)) is holomorphic on the complex domain {z € C :
Sz > 0} (resp. {z € C: Sz < 0} ). Thus applying the Green’s formula we obtain

(¢, f>—l%2—m/f 0+(/\+ze)—a (A—ze))d/\

Using the above formula and the fact that o_ (A — i€) = o4 (X + i€) we get the lemma. O

Now we prove Theorem 3.2. For 6 € R set for j =1, 2,
Hjg = —e A+ V}-(eew).
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The operator (z — H;) "' (Hj — 29) ™™ is unitarily equivalent to (z — H, o)~ ' (H; 9 — 20) ™™ for
real 6. Consequently, the cyclicity of the trace yields

2
(3.6) 04 (2) = (2 = 20)™tr | (2 — H.o) " (H.o = 20) "] |

forallze CL ={2€C;3z >0} and 0 € D(c) NR.

Fix 0 > 0, and let z € Cs = {# € C;Q3z > 0}. Since H;p extends to an analytic type
A family of operators on D(c) and z € Cg, the right hand 51de of (3.6) extends by analytic
continuation in 6 to the disc D(¢/) for small enough ¢’ > 0. For 6§ € D(¢) with 36 < 0, both
terms of (3.6) are analytic on C4 and consequently (3.6) remains true for all z in C,..

From now on, we fix § = —in, n > 0 in D(c). Set Ay 4 = {z € C;Rz > A,3z > —a} for
positive numbers a and A. The following estimate holds uniformly on A, 1 for some positive
constant a:

I(—e™A = 2)71 < sup (le™®jg2 — 271) < Oy (Re) !
£eRn
Using (A2) and the above estimate, we see that
Hjg— 2= (—e 29N — 2) (I + (—e %A - z)_l‘G(eex)),

is invertible for z € A, 4 with sufficiently large A. Moreover, uniformly on z € A, 4,
(3.7) Asa 2z — (Hjp — 2)"Lis holomorphic, and ||(H 60— 2)" U =0(R2)™),
On the other hand, a classical result on trace class operators (see for instance [11]) shows that
(3.8) 1(z0 — Hyp) ™™V 0liller = O(L).
and hence, again by taking the derivatives of the resolvent identity, we have

(3.9) I [0 = H.0) ]} lle = OL).
Next, we write 04 (z) = 0} (2) + 0%(2), where
2) = tr((z = 20)"(z —~ Hig) " (B~ 20)™] j)
tr( 2= 2)" (2 = Ho) 7! j(Hw - zo)—m)

tr| (= = 20)"(= = Hig) V.o (Hao = 20) (= = Ha) ']

From (3.7), (3.8) and (3.9) we deduce that the RHS are holomorphic in A, 4 which implies
that &'(A) = 23(0 (A 4 i0) 4+ 0% (A +i0)) is analytic in |Ag, +oo] for a large constant .

On the other hand, the estimates (3.7), (3.8), (3.9) and the fact that |\ — 29| = O(A™)
imply that |0} (A +ig)], |03 (A +ie)| = O(A™ 1), uniformly for A > Ao > 1 and € € [0, go] for
some ¢q sufficiently small. Consequently,

£ = %sm(x +i0) = %g(a;(x 1i0) + 0% (A + i0)) = O™ 1),

This ends the proof of Theorem 3.2 for N = 0. For N > 1 we take derivatives of o7, (2)
with respect to z and repeat the same arguments as above.
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3.2. Proof of Corollary 3.3. The proof of Corollary 3.3 is a simple consequence of Theorem
3.2 and the following lemma. Let Fp1 be the semiclassical Fourier transform:

itz/h
Fuble) = g [ )

Lemma 3.5. Let ¢ € C§°(R), and let f, be a C* function in R, depending on a parameter
h € (0,1]. We suppose that, there exist m € R and § € [0, 1] such that for all k € N,

(3.10) ( ) fu(z) = O(h™™ ") as u — +oo uniformly for z € R.
Then for all N € N, there exists hy > 0 such that :
o (09 0y Dk N5
(3.11) Fu = fulx) = = v 0)(5) fulz) + ORNOZ0Hm),
k=0

uniformly for x € R and h € (0, hy]. In particular, if 1» = 1 near zero, then

(3.12) Fnp * fn(x) = fn(z) + O(R).
Proof. By a change of variable, we have
(3.13) Futh # fule) = / Fup(t) fulz — ht)dt
R
Applying Taylor’s formula to the function t — f;(x — ht) at ¢t = 0, and using (3.10), we get
(3.14) (z — ht) Z ( th + O(RNO=0)=my Ny,
Inserting the above equality in (3.13) and using the fact that /(—it)k]-'lz/)(t)dt = ™) (0) we
R
obtain (3.11). O

Now we pass to the prove of Corollary 3.3. Let g € C§° (]% %[) be equal to 1 near one. For
h >0, we set fu(z) := g(x)¢'(;7). Using Lemma 3.2, we see that the function f;, satisfies all
the assumptions in Lemma 3.5 with § = 0. Let ¢ € C"x’( ) be as in Lemma 3.5 with ¢ = 1
near zero. According to Lemma 3.5, we have

(3.15) Frip = fh(l‘) = fh(l‘> + O(hoo).
On the other hand, a simple calculation shows that

W2 Fpib * fu(z) = 2 /R Fuip(x —t)g(t)€ (t/h?)dt = /R Fnibn (z — th?) g(h*t)¢ (t)dt
= (&, Fn (z — 0% g(h*.))

(3.16) = tr [Fpip (v — h2Ha) g(h*Ha) — Futp (x — h*Hy) g(h*Hy)) .

For 0 < h << 1,h%2H is an h—pseudodifferential operator. According to [31, 32] (see also
chapters 11-12 in [11]), the right hand side of the last equality has a complete asymptotic
expansion in powers of h2. Combining this with (3.12), we get

W2 Fpp * fu(z) = h=2 fu(z) + O(h®) = h™ Za (2)h¥ + O(h™).
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Taking = 1 and A = ;2 we obtain
) =22 a; (AT OA™).
j=1

We recall that f,(x) = g(x)¢'(z/h?) and g(1) = 1. This ends the proof of Theorem 3.3. The
explicit formula of a; is given by (2.8) in Theorem 2.1.

Remark 3.6. Theorem 5.2 remains true if V1 is an homogeneous potential of degree zero and
smooth on R™\ {0} (i.e. a pur homogeneous potential of degree zero). In fact, according to the
the proof of Theorem 3.2, one need only that the operator L*(R™) > u — Vj g(z)u(z) € L*(R™)
is analytic with respect to 8 € D(c) and uniformly bounded.

4. SEMICLASSICAL ASYMPTOTICS

In this section we consider the semiclassical Schrédinger operators Hy(h) and Ha(h) given in
(1.1). To simplify the presentation, let us assume, throughout this section, that the potentials
are homogeneous of degree zeero at infinity. More precisely, in addition to the conditions
(A1), (A2) we suppose

(A3) There exists a homogeneous function W of degree zero such that

(4.1) lim (Vl(x) - VV(a:)) ~0.

|z| =00

The essential spectrums of the operators Hi(h) and Hs(h) coincide with the semi-axis
[min,,cgn—1W(w),+00). For I6 # 0, we have

(4.2) Oess(H19(h)) = Oess(Ha9(h)) = Sp := {6_298 +t;s>0and t € W’(S”_l)}.

In fact, we easily see oess(—e 2?h2A+ W (x)) = Sy by Weyl’s criterion, and (4.2) follows from
(4.1) and Theorem 5.35 in [21] !. Consequently, W (S"™!) = gess(H19(h)) N R is included in
the essential spectrum of the distorted hamiltonian H;g(h). For this reason, we will exclude
the energies in W (S™ 1) in this section.

Fix an interval J C R with infJ > max cgn-1W(w). Let Res H;(h) denote the set of
resonances, i.e. the eigenvalues of the Hjg(h) in the lower half complex plane near I.

Theorem 4.1. Under (A1)-(A3), there exist an h-independent open complex neighborhood
Q of J and a holomorphic function r(z,h) in Q satisfying

(4.3) |r(z,h)| < Ch™"
such that for h small enough and A € J, it holds that

2
(44)  E€(\h) =Sr(\h) + { 3 % + 5(>\—w)} .
1

w€EResH.(h)NQ wEapp(H.(h))NO

I Theorem 5.35 [21] : Let T be a closed operator on a Hilbert space H and let A be a relatively T-compact
operator. Then cess(T') = gess (T + A).
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As stated in the introduction, for the Schrédinger operator with long-range perturbations
decaying at infinity (i.e., V3 = 0), the proof of the above theorem is due to V. Bruneau and
V. Petkov [4]. The main ingredient in the proof of Theorem 4.1 is Proposition 4.2.

By Lemma 3.4, we have
&\ h) = %%UJF()\Jr i0, h),
where
oy(z,h) = (2 — zo)mtr[(z — H.(h))"Y(H.(h) - zo)_m}j, Sz > 0.
For 6 € R, we introduce
Hjg(h) = —h% A + Vj(ex).
As in the proof of (3.6), analytic continuation argument shows that, there exists 6y small
enough such that for any 6 € D(0,6y) we have
(4.5) oi(zh) = (2 — zg)mtr[(z — H.g(h)) " (H.g(h) — zo)—mﬁ, Iz > 0.

From now on, we fix 0 = in with n > 0, and we let €2 be a bounded complex neighborhood
of J with Q C Qp := {2z € C; Rz > a, Iz > —n}. Now, as in the proof of Theorem 1.5 of [4]
(see also), we will reduce the study of the r.h.s. of (4.5) to the study of a finite rank operator.

Proposition 4.2. There exist finite rank operators K; = Kj(z,h), j = 1,2, in L*(R™) such

that rank K; = O(h™"), | K;|| = O(1) and

(4.6) o1 (z,h) = [tr ((1d + K)7'0.K)]% + k,

where k = k(z, h) is a holomorphic function in Q satisfying the estimate |k(z, h)| = O(h™").

Proof. Let M, R be two large constants, x, x € C5°(]—2R, 2R]; [0, 1])) equal to one on [—R, R|

with ¥ = 1 near suppx and f € C§°(] — 3R, 3R[;[0,1]) equal to 1 on [-2R,2R]. We define
K(h) = iM f (=h*A+ |e?) X(=h*A)x(|2)X(=R*A) f (=P*A + |2f?)

Clearly, K(h) is a finite rank operator and

(4.7) rank K (h) < rank f(—h?A + |z|?) = O(h™™).

From the functional calculus for h-pseudodifferential operators, we know that the Weyl symbol
of the operator f(—h2A + |z|?) has an asymptotic expansion of the form:

N
DRI + |2 ar(, €) + O(WN (2, €))7), VN,
k=0

with symbols ag(z, ) depending on z%, £¢ with |a] < 2k (see the proof of Theorem 8.7 in
[11]). Combining this with the fact that f®)(|€]% + |z[2)%(|€]*)x(|z[?) = 0 for k > 1 as well
as the fact that YV (|€]2)x™ (|z|>) = 0 for I,m > 1, we deduce from the composition formula
of h-pseudodifferential operators that

(4.8) K(h) = iMOpy (f(I€7 + |2[%)*X(1€1*)*x(|=]*)) + Opf (A ((2,£)) ™).
Set, for j =1, 2,
(4.9) H; r(h) == Hjg(h) — K(h).
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Then, modulo O(h*>((z,£))~>°), the symbol of ffjﬁ(h) is given by

Hjp(w,€) = e |6 + Vig(x) = iM F(E° + |2I*) X (€1°)*x(|[*).
and for z € Q, |I/1\ijR(x,§) — 2|2 = Ry + Ry with

Ry = [&F cos(20)R(Vig —2)]°

R = [|€[2sin(20) + M f (|¢[*[2?) R(1€2)x(|2 ) + Sz = Vip)]
Choose R large enough so that R > 2sup,cgn cq|R(Vje(x) — 2)|. It follows that
(4.10) Ry > C(1+[€*? for |¢2 >R, z€R™, z€ Q.
Next, we choose M large enough so that M > sup,cpn ,eq|S(2 — Vjg(z))|. Then
(4.11) Ro > (M +Sz—QVjg(x)>>e>0 for [P <R, |2 <R, z€Q.

It remains to esgtimate |ﬁjR(x,§) — 2| for [£]> < R and |z|?> > R. From (2.1) and the
assumptions (A2), (A3), we have for j = 1,2,

RV g(z) = W <—|f|) +or(1), SVje(x) = or(1),
Since o := inf,cRz > sup,cgn-1 W (z) =: B, it follows that for 6 small enough
2
x —f
4.12 > W= 1) —cos(20)[¢?) > ¢ f o — |
( ) Rl_(%z <|x>+OR( ) — cos( 9)|£|> >¢>0 for ¢ S Seos(20)

On the other hand, for |£]? > %os_(éLG) and |z|? > R, we have

(4.13)  Ro > (sin(20)[¢)* + Mf (1€ + |2?) L2(12)x(|2]?) + Sz + Or(1))* > ¢ >0,

uniformly for z € Q provided that Q C {z € C,3z > —n} with 0 < n < 1.
From (4.10), (4.11), (4.12) and (4.13) we deduce that, uniformly for (z,¢) € R*® and z € Q,

(4.14) |Hj r(z,€) — 2| > C(1+[¢%),

modulo O(h*>(xz,£)~>°). Hence, for h small enough, the operator ﬁj,R(h) — z is elliptic for
z € ). Therefore, z — Hjr(h) is invertible for h small enough, and

(4.15) (= — Hj r(h) Y| = 01),

uniformly for z € Q. Moreover, for h small enough and z € 2, (z — H 5 r(h))™!is an h-pseudo-
differential operator. By construction, we have

2= Hyp(h) = (10 = K(h)(z = Bip(m) ) (= = Hy n(h),
which yields
-1

(4.16) (2 = Hg(h) ™" = (= = Hy ()™ (1d = K(W)(z = Bin(h)™")

uniformly for z € Q and h small enough.
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We can now decompose the right hand side of (4.5) as 04 (z,h) = Iy + Iz + I, where

I = (-1 (2 = 20" (2 = Hyo(h) ™" = (= = Hy(r) ™) (Hjp(h) = 20) "]

= (=1)(z - Zo)mtr[(z — H g(h)) 'K (h)(2 — Hjo(h)) " (H;o(h) — Zo)_m},

~ 2
1= (2= z0)™tr[ (= = M r(h) ™ (20— Hoo(h) ™| .

Clearly , I is analytic on 2. On the other hand, the h-pseudo-differential calculus shows that
I =0O(h™). Now we treat ;. From the resolvent equation we have

m—1

(2= 20)™(z— Hjp(h)) " (20— Hjo(h)) ™™ = (2= Hjo(h)) " = (20— 2)" (20 — Hjp(h))F .
k=0
Using the above equality and the cyclicity of the trace we deduce that

I = (=1tr (2 = Hp(0) K (R)(z = Hjn(h) ™) + (2, h),

wher z — g;(z, h) is analytic on Q and |gj(z, h)| = O(h™") uniformly for z € Q. Inserting the
right hand side of (4.16) in the above equality and using the cyclicity of the trace, we obtain

I; = (~1)itr <<Id ~CK(h)(z— Erjﬂ(h))—l)_1 K(h)(z — 1 R(h))—2) +g;(z,h)

= (=1)7tr (Id + K; (2, h)) 0. K;(2, 1)) + g;(2, ),

where

(4.17) Kj(z,h) = =K(h)(z — Hr(h) .

It follows from (4.9) and (4.15) that

(4.18) rank K;(z,h) = O(h™").

This concludes the proof of Proposition 4.2. O

Proof. of Theorem 4.1. This follows from a routine application of Proposition 4.2. For the
reader’s convenience we give the main steps of the proof. Set
Dj(z,h) = det (Id + K;(z,h)).
Notice that
(4.19) 9.0 Dj(z,h) = tr ((Id + Kj(z,h)) 10, K;(z,h)),

and recall that the resonances of H;(h) in 2 lie in the lower half plane, and are the eigenvalues
of Hjg(h). Combining this with (4.16) and (4.18) we deduce that the zeros of D;(z, h) in
are the resonances of H;(h) in Q, and that the multiplicity agree. Hence, one has

(4.20) Dj(z,h) = Gj(z, h)lyeRres(H, (h)),3w<0 (2 — W) ,
where Gj(z, h) are non-vanishing holomorphic functions in 2. On the other hand, using (4.16)
and (4.20) we deduce by a standard arguments of complex analysis that G;(z, h) = O (eo(l)hn)
and |G (2, h)| > Cre” "™ on Q and QN {|Jz| > €} respectively. Combining this with the
Harnack inequality we get

|00 (Gj(z,h)) | = O(h™"),
which together with (4.20) yields Theorem 4.1. O
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Remark 4.3. The above arguments also show that the number of resonances of H;(h) in Q
is O(h™™). For the details we refer to [4].

As in [4] (Theorem 2) and [9] (Theorem 2-3), the following result is a consequence of
Theorem 4.1.

Theorem 4.4. Assume (A1)-(A3) and that V,Vj(x) # 0 if Vi(z) € J for j = 1,2. Then
we have

(4.21) €\ h) = (21th) "eo(N) + O(h™ Y,

uniformly for A € J, where
2

CO<A>:%/[(A—V($>)ﬂ dz.

1
Moreover, if there exists § > 0 such that

(4.22) Res(H,;(h)) N (J - z‘[o,h5]) —0, j=1,2,

then &' (X, h) has a complete asymptotic expansion with smooth coefficients
(4.23) €' h) ~ Y b (VR
k=0

as h ™\, 0 uniformly for X € J. In particular (2m)"bo(X) = c¢{(N).

Proof. Let g and ¥ be smooth functions with supports in small neighborhoods of J and zero
respectively, with ¥ = 1 near zero. According to Theorem 12.2 in [11] (see also [13, 18, 19,
30, 32]), the following full asymptotic expansion holds uniformly for A € J as h \ 0:

(4.24) Fn® % (g€ ) (A h) ~ > bp(A)RF™.
k=0

When & were a monotone function as in the case of eigenvalue counting function, the Weyl
asymptotis (4.21) would follow simply from this formula by a Tauberian argument. However,
it is not the case for the SSF. To overcome this difficulty, we use (4.4).

In fact, let &} be the sum over resonances and eigenvalues of H; in the RHS of (4.4). Then
they are positive in the sense of distribution, and Tauberian arguments work for £; and &o.
To treat the term involving 37 (A, k), notice that, by Cauchy’s inequalities and (4.3), we have
087 (2, h)| < Cxh™, which together with Lemma 3.5 yields
(4.25) FnU s (gSr) (N, h) = g(A\)Sr(A, h) + O(R™).

This completes the proof of (4.21). For more details we refer to Theorem 2 in [4].
Let us now sketch the proof of (4.23). By hypothesis (4.22), the RHD of (4.4) equals

2
—SQw
(426) 6/()\, h) = %T’()\, h) + Z m
w€ResH. (h)NQ 1
For fixed w with Sw < —h9, we apply Lemma 3.5 to fi,(\) = %fj(ﬁ) to get
—Swg(N)

FnU s fr(A\ h) = + O(h™).

A —w]?
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Combining this with Remark 4.3, (4.25) and (4.26), we obtain
Fp¥ # (g€ ) (A, h) = g(N)E (A, h) + O(h™).
Therefore, (4.23) follows from the weak asymptotics (4.24). d

Remark 4.5. Notice that if Vi = W is a pure homogeneous potential of degree zero then
the operator Hi(h) = —h?A + W (x) has no eigenvalues (see [14]). On the other hand, the
arguments in the proof of Theorem 3.2 and Proposition 4.2 show that Hy(h) = —h?A + W (z)
has no resonances near A for X > supW. In this case we may write (4.4) as follows

—Sw
§I(>\, h) = JT‘()\,h) + Z m + Z 5()\—w).
w€ResH3 (h)NQ weapp(Ha(h))NQ

In general one cannot exclude the existence of embedded eigenvalue of a perturbation of pure
homogeneous potential (see [1, 15]). Nevertheless, as will be shown in the next section the
only possible threshhold energies of H;(h) are the critical eigenvalue of W.

5. SEMI-CLASSICAL MOURRE ESTIMATE
In this section, we prove a semi-classical Mourre estimate away from critical values in
W (S™1). This shows that the only possible threshhold energies of H;(h) are those in
Cor = {N € R; 3w € S™ ! such that W(w) = A and VIW(w) = 0}.
From now on, we denote V' = V; and H = —h?A 4 V(z). We assume

(A4) V € C®(R™R), and there exists a homogeneous function W € C*4(R"; R) of degree
zero such that

(5.1) lim (xaagV(x) - x“ﬁfW(x)) =0 for all |a| + || < 4.

|z|—o00
We introduce a function F'(z) with a positive parameter 8 and a differential operator Ap by
1
2

Theorem 5.1. For \ & C.., there exist small positive constants €, hy and compact operators
K;, j =1,2, such that, for 3 > 0 small enough and f € Cg°(J]A — €, A + €[; R) we have

(5.3) f(H)[H, Ap)f(H) > Chf(H)* + K,
uniformly for h €]0, ho].

(5.2) F(z) = =(1—28Vi(x))|z|?>, 24r =VF -hD, + hD, -VF.

Proof. A straightforward calculation shows that
i[H, Ap] = 2h(hD,(V @ V F)hD) + Bh|z|*|VV|? + r(z, h)
where V® V F =1Id — BV @ V (|z|?V(z)) is the Hessian matrix and
h3
2
It follows from the assumption (5.1) that V ® V (|z|?V (z)) is a bounded symmetric matrix.
Hence, for 8 small enough, we have

2h(hD,(V @ V F)hD) > —h?A.

(5.4) r(z, h) = A%F(x) — h(1 =28V (z))z - VV (z).
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The condition (5.1) also implies that r(x, h) is a continuous function decaying at infinity. By
Rellich’s theorem, r(z, h)(H +i) ! is compact, and r(z, h) f(H) = r(x, h)(H+i) " (H+i) f(H)
is also compact for all f € C§°(R), since (H + i)f(H) is bounded. Therefore, there exits a
compact operator K such that for 8 small enough, we have

(5:5)  f(H)I[H, Aplf(H) > hf(H)Hgf(H) + K1, Hp=—h*A+ Bla|*|VV [,
Now we fix A & C,. Then there exist €, x > 0 such that
(5.6) VW (w)| > &, for all w € ™1 with W(w) €]X — 3¢, A + 3¢[.
We divide the unit sphere S”~! into three open subsets S"~1 = O; U Oy U O3, where
O1={A—3e<W(w) <A+3e}, Or={W(w) <A—2¢}, Oz3={\+2e<W(w)}.
Let {xo0, X1, X2, X3} be a smooth partition of unity of R", 22:1 X3 (x) = 1, satisfying
suppxo C {z € R"; || < R}, and X()(LE) =1 for |z| < R/2.

suppxx C {z € R"; |z| > R/2, — € O}, and x - Vxi(z) = 0 for || > 3R/4.

We choose R large enough such that for |z| > § one has

(5.7) e [VV )P~ [P IOW Pl < 5, V) - W) < 5.
By the so-called IMS localization formula, i.e.,
3 3
Hp =Y xiHgxe — h* Y (Vxe)?,
k=0 k=0
it follows from (5.5) that
3
(5.8) FOH)I[H, Ap]f(Hy) > 1Y I+ Ko, I = f(H)xxHgxif(H),
k=0

where

Ky = K1+ [(H)xoHgxof (H —hQZf )(Vxi)*f(H)

is a compact operator for the same reason as Kji, since yo has a compact support and
ZzZO(VXk)Q tends to zero as |x| — oo by the homogeneity of .

First, we prove (5.3) for j = 1. Let us investigate I, Iy and I3. We begin with I;. On the
support of x1, we have by the homogeneity of W,

22|V W (2)* > k.

Combining this with (5.7), we obtain x1Hgx1 > %x% and hence
hkp
(5.9) Lz —=f(H )X3f(H).

Next, we study Io. From now on we restrict the support of f to JA — ¢, A+ ¢[. This implies
f(&)(t —X) > —ef(t), and hence, by the spectral theorem,

(5.10) FUH)(H = 3) > —ef(H).
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On the support of x3, we have
I > hf(H)xa(—h*A)xa f(H) = h(Iz1 + L),
Iy = f(H)x2(H — Nxa2f(H), T2 = f(H)x2(A—V)xaf(H).

Since Isg = f(H)(H—=A\)X3f(H)+h?f(H)(Ax2)xa2f(H)+2hf(H)Vx2-hV f(H), the estimate
(5.10) and the fact that f(H)Axa, f(H)Vx2 are compact operators as well as that hV f(H)
is bounded lead us to the estimate

Iy > —ef(H)x3/(H) + K3,
where K3 is a compact operator.

On the other hand, on the support of x2 we have A —V > %e. Therefore

by > Scf(H)GF()

Summing these estimates about I2; and I3 2, we get

1
(5.11) Iy > Sef(H)x3f(H) + Ks.

Finally, we show that I3 is a compact operator. On the support of x3, one has V(x) > /\—l—%.
Thus, the support of x3 is contained in the classically forbidden region of the operator f(H).
In particular, by the semiclassical Weyl calculus, one has f(H)xs = O (h*(£)~>°(z)~>) on
the symbolic level. Therefore f(H)xs, and hence I3, are compact operators.

Combining this with (5.8), (5.9), (5.11) and using the fact that f(H)x2f(H) is also a
compact operator, we get, with another compact operator Ky,

. h .
(5.12) F(H)i[H, Ap] f(H) > 5 min (x5, ¢) f(H)? + K,y
This ends the proof of the theorem. O
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