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Abstract

Observability estimates on Euclidean space are considered. We
prove the observability estimate for Schrodinger operators on the Eu-
cleadian set minus tube. Our proof is stable under perturbation by
bounded and smooth real-valued potential. Our assumption on the
operator are saisfied by some non-elliptic operators and differential
operators with unbounded coefficients. Results in this article are col-
laboration work by the author with Fabricio Macia and Shu Nakamura.

1 Introduction

In this article, we introduce our collaboration work by the author with Fabri-
cio Macia and Shu Nakamura on the observability estimates for Schrodinger
operators on Euclidean space minus tube.

1.1 Statement of the main result

Let Q C R? be such that Q = R* x w with 1 < k < d and w C R**. We
assume R?*\ w is compact.

Let P, and P, be diffrential operators on R¥ and R%* respectively. We
define diffrential operator P on R? by P = P, + P, + V().
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Assumption A. P, P, and V satisfy followings:
1. P is essentially selfadjoint on C§°(R?).

2. P, is a differential operator with smooth real valued coefficient and
essentially selfadjoint on C5°(IR¥).

3. P2 - —ARd—k.
4. Ve L*(R?: R) and sup |05,V (z)| < oo for any o € N with |a| < 1.
rER?
Example. 1. If k =1, P = — Agr +x1; and V = 0, then P is Stark

Hamiltonian and Assumption A is satisfied.

2. If k=1, P, = Ag and V = 0, then P is d’Alembert operator and
Assumption A is satisfied.

Theorem 1.1. (Observability estimates)
Suppose Assumtion A is satisfied. For any T > 0, there exists Cor > 0 such
that

T
||U||%2(Rd) < CQ,T/ /Q|6_”Pu(x)|2dxdt,
0

for any u € L*(RY).

In [9], Lions proved that observability estimate holds if and only if corre-
sponding exact control problem has a solution. In our setting, exact control
problem is a following problem: for given T' > 0 and ug, u; € L*(R?), can we
find f € L?*(R; x R%) such that

{ i0u(t, x) — Pu(t,z) = lg(z)f(t,x), (t,r) € R x R?, 1)

Ult:() =Ug € Lz(Rd)
has a solution u € L*(R x R?)?

Also, Miller showed that this this exact control problem is equivalent to
the following spectral inequality:

Theorem 1.2 (Miller [13, Corollary 2.17]). Let A be a selfadjoint operator
on L*(R?), which is the infinitesimal generator of a strongly continuous group
(e™);er on L2(R?). If the evolution equation (1.1) with P replace by A is
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exactly observable from a measurable subset Q C R? at some time T > 0 then
there exist some positive constants k > 0 and D > 0 such that

VAER,Vf € IL{\A—/\|§\/5} (LQ(Rd))a ||fHL2(Rd) < \/EHfHL?(Q)- (1‘2)

Conversely, when the spectral estimates (1.2) hold for some k > 0 and D > 0,
then the system (1.1) is exactly observable from Q) at any time

1+k
T > T T

It is known that on compact manifolds, observability estimates are related
to the property of the geodesic. We say ) C M satisfies the geometric control
condition (GCC) if any geodesic with length L intersects with 2. Lebeau
proved in [7] that for a compact Riemannian manifold (M,g), if @ € M
satisfies GCC, the observability estimate for Laplace-Beltrami operator on )
holds.

There are two main difficulties in our setting: {2 does not satisfy the
geometric control conditions, and R? is not compact. The first difficulty is
relaxed by assuming that €) is a product of Euclidean space and Euclidean
space minus compact set.

The second difficulty is much more severe since the proof of observability
estimate in [7] uses compactness of the space. In the [7], the observability
estimate in high energy regime is shown in then it is shown that low energy
regime can be regarded as a minor error. In the second part, compactness
plays a critical role. We use Logvinenko-Sereda theorem to avoid this diffi-
culty. See section 3.2 for the detail.

1.2 Thick set and Logvinenko-Sereda theorem

Definition 1.1. A measureble subset S C RY is thick if there exists a cube
K C R? with sides parallel to coordinate axes and a positive constant 0 <
~ < 1 such that

vz eRY, |(K+2z)NS|>~|K|>0,
where |A| denotes the Lebesgue measure of the measurable set A.

Theorem 1.3 (Logvinenko-Sereda [8]). Let S,% C RY be measurable sets
with X compact. The following assertions are equivalent:
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- The subset S is thick.

- There exists a positive constant C = C(S,X) > 0 such that for all
f e L*RY),

[y@ra <o [irwras [ )

Logvinenko-Sereda Theorem states any function f in L?(R?) never con-
centrates in a thick subset if its energy is concentrated in a compact set. In
this sense, Logvinenko-Sereda theorem can be regarded as a sort of uncer-
tainty principle for a thick set.

Kovrjikine obtained some exact constant in Logvinenko-Sereda theorem.

Theorem 1.4. Let S C R? be measurable set. We say S is (v, L)-thick set
if
vz € R, [((0, L] +2) N S| > 7L,

with v € (0,1). There exists a constant C' > 0 such that for any f € L*(R?)
with suppf C J where J is a cube with sides of length b parallel to coordinate
aris,

1 fll 2@ay < c(v,d, L, b)[| fll2(s),

Cd(Lb+1)
uﬁhdmmLm):<g) .
g
Remark. As b — oo, ¢(v,d,L,b) — oo. Thus it is impossible to obtain
observability estimates directly from Logvinenko-Sereda theorem.

Thickness may be considered as a higher dimensional analogue of the
geometric control condition. We define the x-dimensional geometric control
condition as follows:

Definition 1.2. Fix x € {1,...,d}. For £ > 0 and v > 0, a set £ C R?
satisfies the k-dimensional (¢,7)-GCC if for any x-dimensional cube @) C R"
of side-length ¢,

QN Bl = 9]Qx,
where | - |, denotes the k-dimensional Hausdorff measure. We say that E

satisfies the k-GCC if it satisfies the k-dimensional (¢, v)-GCC for some ¢ > 0
and 7.



With this notion of the x-dimensional GCC, a thick set is a set that
satisfies the d-dimensional GCC. On the other hand, on a compact manifold,
the 1-dimengional GCC and the GCC used in [7] are equivalent. However, we
have to assume uniformness, in general, to obtain to obtain the 1-dimengional
GCC from the usual GCC. Assume S C R satisfies the x-dimensional GCC.

From Fubini theorem, S must satisfy the x’-dimensional GCC for ' > k.
Let Q = T1¢_, (ay, a, + L) CR? and Q = T1¢_, , | (ay, aj, + L). We see

SNQ|
:/]lg(x)dx
Q
ap+L a1+L
:// / Lsg(xy, -, ap, 2")day - - - dagda’
Q Jay al

:/~|Sﬂ{($1,$/)|a5<$1 <ag+L,€:1---k}|kdx'
Q

> vL/ da’
Q

= L4

Consider Py, = (—A)® for s > 0. In [12], Martin and Pravda-Starov
showed that if S C R satisfies observability estimates for P,, S must be a
thick set. Further, when s > %, it is proved that there exists Ty > 0 such
that observability estimates on S with time 7" > 0 holds if T" > T,. Huang,
Wang and Wang showed the same results when s = 1 and d = 1 in [j]
independently.

Also, Martin and Pravda-Starov showed that if S satisfies the xk-GCC for
k € {1,---d — 1}, 0 neighbourhood of ) satisfies observability estimates for
Py and sufficiently large T > 0.

Assume (2 satisfies Assumption A. Then one can easily see w is a thick
set and 2 is also a thick set. However, €2 does not satisty GCC. Therefore
Theorem 1.1 gives an example of {2 that is thick and satisfies observability
estimates for P and any 7" > 0 but does not satisfy the x-GCC for k €
{1,---d—1}.

Theorem 1.1 also shows that the observability estimate is stable under
perturbation by bounded and smooth potential. Furthermore, Theorem 1.1
covers some non-elliptic operators and operators with unbounded potentials

(See examples after Theorem 1.1 for the detail).
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2 Preliminary

2.1 Pseudodifferential operators and semiclassical de-
fect measures

As we stated before, in [7], Lebeau first proves the semiclassical observability
estimates to obtain the observability estimates. In his proof of the observ-
ability estimates, Lebeau used semiclassical defect measure.

This subsection aims to provide some basic notions of semiclassical anal-
ysis needed later. This subsection also aims to provide some concepts of
semiclassical measure. You can find all the proof of the theorem in this
subsection in [16].

Let a € C3°(T*R?). We define Weyl quantization of a by

w 1 iamwe (X +
a“(x,hDy)u(z) = W/de@ 2 a( 5 y7€> u(y)dydg,

for u € §(R?). Then a“(z, hD,) is extended to a bounded linear operator on
L?(R%). Further we obtain following theorem on the properties of a"(x, hD,)
as a bounded operator on L?(IR%).

Theorem 2.1. (Calderon-Vaillancourt Theorem)
For a € C°(T*RY), there exists C' > 0 such that

a¥ (hX, D)l e(r2ray < C'SUp(yeperae lalz, )] + O(h2) as h — 0.

Theorem 2.2. (Sharp Garding inequality)
Suppose a € C°(T*RY) is positive. Then there exist C' > 0 and ho > 0 such
that

(u,a™(hX, Dx)u)r2may > —ChHUH%%Rd)

foru € L*(R™) and 0 < h < hy.

From the Riesz-Markov-Kakutani theorem and Theorems 2.1 and 2.2, we
obtain following theorem.

Theorem 2.3. (Existence of semiclassical defect measure)
Let u, € L*(R?) be a bounded sequence in h. There exists a sequence of



positive numbers h,, and a positive finite Radon measure u on T*R? such
that h,, — 0 as m — 0o and

(un,,,a" (x, hDqy)un,,) 2@a) — adp as m — oo,
T+Rd

for all a € C°(T*R?).

We call this p semiclassical defect measure of uj,. We remark that this p
depends on the choice of h,,.

Wigner first introduced the notion of the semiclassical measure in [14].
The study of the partial differential equation using defect measure appeared
in [10], and Patrick Gérard refined it in [4]. You can find several proofs of the
existence of semiclassical measures in [2, 3, 11, 15]. You can find a survey of
this subject in [1].

2.2 Estimates on propagators

This subsection aims to provide some estimates on propagators P, which we
will use in the next section. Let P = P, + P,
—ietP _

Lemma 2.4. For anye >0, |le e P |2 ay < €tV oo (raey.-

Proof.

—ietP e—z’stP HB(

e

t = .
— H / e—zsspgve—zs(t—s)PdSHB(L2(Rd))
0

L2(R4))

t . .
S/ ||6_ZESPEV6_ZE(t_S)P||*B(L2(Rd))d5
0
S €t||v||L°°(Rd)
O

Lemma 2.5. Let x € C°(R) and h > 0. [|[x(F*P2),e " ]|p2ma) =
tO(h?) as h — 0.



Proof. From Hellfer-Sjostrand formula,

[X(hZPZ) ) e_ihtP]
1
2772

=5 /8)( (A-4)( / M PI(R2Py — 2)71, hPle™M=9)Pdsd2dz,

where y(44) is almost analytic extension of .

[(hW*P, — 2)" ', hP]

= (h2P2 - Z)_l[thg, hp](h2P2 - Z)_l

= (h*Py — 2) ' [W? Py, hV](R*Py — 2)7*

= h*(h*Py — 2) ' (2, hD,)(h* Py — 2) 1,
where ¢(x,£) = ¢ -0, V.

Then there exists C' > 0 and h, > 0 such that for for any h € (0, ho)
[(R*Py — 2) ' (x, hDy)(h* Py — 2) M| g(12reyy < ClImz|~2 for some C' > 0.
Since Y44 is almost analytic extension of x € C3°(R?), |0y (2)|[Imz|~2
is integrable on C, which concludes the proof. O

IXAN()[(RPPy — 2)7, e "] d2dz

3 Proof of the main theorem

By modifying the arguement in [7], one can prove observebility estimate from
following two energy localized estimates:

Theorem 3.1. Let y € C*(R%; [0, 1]) be such that 1oX = 1q. If Assumption
(A) is satisfied, for any T > 0, there exists C, 1, ho > 0 such that

It Pyl e
< Cur ([ IO PR )+l )

for any u € L*(R?) and 0 < h < hy.

Theorem 3.2. (Observability for low energy)
Let x € C°(R). Then there exists C,,, > 0 such that for any T > 0,

IX(Po)ullZza)

wx/ /|e‘”P )?dadt + Copy T2V || oo Ry ||u||L2(Rd




for any u € L*(RY).

3.1 Semiclassical observability estimates

This subsection is devoted to proving semiclassical observability estimates.
We follow the argument in [7]. However, we have to change the discussion a
bit due to non-compactness.

Theorem 3.3. (semiclassical observability estimates)
Let x € C5°(R) be such that 0 ¢ suppx. For any T > 0, there exists Cy, 7 > 0
and hyg > 0 such that

||X(h'2p2)u||i2(Rd—k)
T

< Cur (/ / le™ P2y (B2 Py)u(z) |Pdadt + h2||u||%2(Rd_k)>
0 w

for any v € L*(RY%) and 0 < h < hy.

We prove this theorem by contradiction. Assume the assertion does not
hold. Then there exists u, € L2(R%*) and hy, > 0 such that

1. hy > 0as ¥l — .
2. |Ix (P Pa)uell 2 (eny = 1.
3. fOT ||e—itth2x(h?P2)Ué||%2(w)dt —0as ¥l — oo.

From second and third condition, we obtain v,(t) = e~ 2y (hZPy)u,
satisfies limy_o ||0(t)[|z2@ny = 1 for any ¢ € (0,7)). We then apply the
semiclassical defect measure argument in [7] as uy, is supported in a compact
set in a semiclassical sense.

Since L?(RY) = L?(R*) ® L?(R?*), one can extend Theorem 3.1 to semi-
classical estimate for P, + P, on R?. From Lemma 2.1, we obtain following
proposition.

Proposition 3.4. (semiclassical observability estimates on R?)
Let x € C5°(R) be such that 0 ¢ suppx. For any T > 0, there exists Cy, 7 > 0
and hg > 0 such that

HX(h2P2)uH%2(]Rd)

T
<Cun ( [ [ weepgerapaca + h?HuHiz(Rd))
0 Q



for any v € L*(RY) and 0 < h < hy.

From lemma 2.3 and the arguement in [7], one can replace e~ ¥ by e~¥
to obtain Theorem 3.1.

3.2 Low energy observability estimates

From Logvinenko-Sereda theorem in [8], there exists a C' > 0
IX(P)ul 7 a-ry < Clle™ > x(Pa)ullfz

for any u € L?*(R?%) since Q is a thick set. By replacing u by e~y and
integrate above inequality on (0,7") to obtain following lemma:

Lemma 3.5. Let x € Cg°(R). Then there exists C,, > 0 such that for any
T >0,

Cy T »
(Pl < S22 [ [l u@pde @)

for any u € L*(R4F).

Similarly to the semiclassical case, we can extend this estimate to the
estimates on €2 to obtain Theorem 3.2.
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