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1 Introduction

A convex polytope is a subset of a Euclidean space which is a convex hull
of finite points. It is known that a convex polytope can be described as the
intersection of finete closed halfspaces, i.e., it is described as the set of points
satisfying finite inequalities. However, in general, it is difficult to describe a
given convex polytope by finite inequalities explicitly.

Let G = (V, E) be a finite simple graph. A stable set S of G is a subset of
V' with no two elements of S are adjacent. The stable set polytope of GG is the
convex polytope in R#" spanned by the points corresponding to stables sets.
It is hard to describe stable set polytope by inequalities. However, there are
convex polytopes described by inequalities which are slightely larger than
the stable set polytope. We denote them by HSTAB(G), TSTAB(G) and
QSTAB(G). These polytopes contain the stable set polytope. In this note,
we discuss the Gorenstein property of the Ehrhart rings of these polytopes.

2 Graphs

We denote by N the set of nonnegative integers, by Z the set of integers, by
Q the set of rational numbers and by R the set of real numbers respectively.

*This paper is an announcement of our result and the detailed version will be submitted
to somewhere.



For a set X, we denote by #X the cardinality of X. For sets X and Y, we
define X \Y := {z € X | x € Y}. For nonempty sets X and Y, we denote
the set of maps from X to Y by Y. If X is a finite set, we identify R* with
the Euclidean space R#*X. For f, fi, f» € R¥ and a € R, we define maps
fi# foand af by (fi + fo)(x) = fi(x) £ fo(x) and (af)(z) = a(f(z)) for
x € X. For a subset A of X, we define the characteristic function y4 € R¥
by xa(x) =1for x € Aand xa(x) =0 for x € X\ A. For a nonempty subset
2 of RY, we denote by conv.Z (resp. aff.2") the convex hull (resp. affine
span) of 2. We denote by relint.Z" the interior of 2" in the topological
space aff 2.

Definition 2.1 Let X be a finite set and ¢ € RY. For B C X, we set
§T(B) =5 &(b). We define the empty sum to be 0, i.e., £7(0) = 0.

A (finite) graph G is a pair of finite set V' and a subset E of (‘2/), where

(g) is the set of 2 element subsets of V. We denote G = (V, E) or V = V(G)
and F = E(G). An element of V' (resp. F) is called a vertex (resp. edge)
of G. If {a,b} € E, where a, b € V| we say that a and b are adjacent. A
clique of GG is a subset K of V such that any two elements of K are adjacent.
Let vq, v, ..., v, be distinct vertices of G with r > 3. If {v;,v;11} € F
for 1 < i < r—1and {v,v} € E, then we say that vivy---v,0; is a
cycle (of length 7). Suppose that vyvs - --v,v; is a cycle. If {v;,v,;} € E and
2 <|i—j| <r—2, wesay that {v;,v,} is a chord of the cycle vivy - - - v,v;.

Definition 2.2 S C V is called a stable set if {a,b} € E for any a, b € S.
And we set

STAB(G) := conv{xs € RV | S is a stable set of G.}
Remark 2.3 It is clear that for f € STAB(G),
(1) f(x) >0 for any z € V.
(2) fH(K) <1 for any clique K in G.
(3) /H(C) <
Definition 2.4 We set

f+
+ #C—1
f ;

for any odd cycle C.

HSTAB(G) := {f € RY | f satisfies (1), (2) and (3) above},

0< f(x)<lforanyz eV, ff(e) <1
TSTAB(G) :=< f € RV | for any e € E and f(C) < # for
any odd cycle C
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and

QSTAB(G) := { feRY

f(z) >0 forany z € V and f7(K) <
1 for any clique K in G '

If STAB(G) = HSTAB(G), then G is called an h-perfect graph, if
STAB(G) = TSTAB(G), then G is called a t-perfect graph.

It follows from the definition that STAB(G) C HSTAB(G) C TSTAB(G)
and HSTAB(G) C QSTAB(G).

Definition 2.5 Let H C V. The induced subgraph H = (V(H), E(H)) of
G is the graph with V(H) = H and E(H) = {{a,b} € E | a,b € H}.

Definition 2.6 Let G’ = (V’, E’) be a graph. A coloring of G’ is a map f
from V' to a finite set C' with f(a) # f(b) for any {a,b} € E’. We set

X(G') :==min{#C | 3f: V' — C is a coloring}

and
w(G") = max{#K | K is a clique in G'}.

It is clear from the definition that x(G’) > w(G’) for any graph G'.

Definition 2.7 G is a perfect graph if x(H) = w(H) for any induced sub-
graph H of G.

Fact 2.8 ([Chv, Theorem 3.1]) G is perfect <= STAB(G) =
QSTAB(QG).

Corollary 2.9 Perfect and t-perfect graphs are h-perfect.

Fact 2.10 (Strong perfect graph theorem [CRST]) G is perfect if and
only if neither G nor G has odd cycle without chord and length at least 5,
where G = (V, (‘2/) \ E).

3 Ehrhart rings

Let K be a field, X a finite set and £ a rational convex polytope in R¥,
i.e., a convex polytope whose vertices are contained in Q. Also let —oo
be a new element with —oo ¢ X and set X~ := X U {—oo0}. Further, let
{T,}.ex- be a family of indeterminates indexed by X .

For f € Z¥~, we denote the Laurent monomial [], 7% @) in K[T' |
r € X ] by TY.

Set degT,, =0 for x € X and degT_, = 1.
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Definition 3.1 The Ehrhart ring of &2 over a field K is the subring

; e b
K[! | [ € 27, f(=00) > 0. 5= 5 lx € )

of the Laurent polynomial ring K[TF! | z € X 7], where f|x is the restriction
of f to X. We denote the Ehrhart ring of &2 over K by Ex[Z].

Note that Ex[Z] is an N-graded ring. Further it is known the following (cf.
[Hoc]).

Fact 3.2 Ex[Z] is a Noetherian normal and Cohen-Macaulay domain.

By Stanley’s description of the canonical module of a normal affine semigroup
ring [Stal, we see the following.

Fact 3.3 The ideal

EB KTf

FELX™ f(~00)>0, 525 flx Erelint
of Ex[Z?] is the canonical module of Ex[Z].

We denote the ideal of Fact 3.3 by wgy[# and call the canonical ideal of
Ex[27].

It is also known that the dimension (Krull dimension) of Ex[Z] is equal
to dim & + 1.

Here we recall the definition of the group of divisors (cf. [Fos]). Let R
be a Noetherian normal domain with quotient field Q(R). A fractional ideal
I € Q(R) is called divisorial if I = R :gr) (R :qr) I). We denote the set of
divisorial ideals of R by Div(R).

Fact 3.4 Div(R) form a group by the operation I-J := R :qr) (R :qr) 1J).

In fact, Div(R) is a free abelian group with basis height 1 prime ideals of R.
We denote the n-th power of I € Div(R) in this group by I™.

Fact 3.5 If R is a Cohen-Macaulay local or graded domain with canonical
module, then the canonical module is isomorphic to a divisorial ideal. In
particular, the canonical ideal wg, 2 0f the Ehrhart ring of a rational convex
polytope & is divisorial.



4 Gorenstein property
First we recall the notion of the trace of a module.

Definition 4.1 Let R be a commutative ring and M an R-module. We set

tr(M):= Y (M)

¢€Hom (M, R)
and call tr(M) the trace of M.
Fact 4.2 ([HHS, Lemma 1.1]) If an ideal I contains a NZD, then
tr(I) = I,
where ™1 :={x € Q(R) | xI C R}.

Note that if R is a Noetherian normal domain and I € Div(R), then
Iil = I(fl)

Fact 4.3 ([HHS, Lemma 2.1]) Let R be a Cohen-Macaulay local or
graded ring over a field with canonical module wr. Then R is Gorenstein
if and only if tr(wg) = R.

Definition 4.4 Set # := {K C V| K is a clique of G and #K < 3}.

Remark 4.5

f(z) > 0forany 2 € V, fH(K) <1
RV for any maximal clique K of G and
C— )
(o) < #2 L for any odd cycle C
without chord and length at least 5

HSTAB(G) =< f €

f(z) > 0forany x € V, fH(K) <1
for any maximal element K of ¢ and

(o) < #C;_l for any odd cycle C

without chord and length at least 5

TSTAB(G) ={ f € RV

and

QSTAB(G) = { feRrY

f(z) >0 forany z € V and fH(K) <
1 for any maximal clique K of G '



Definition 4.6 For n € Z, we set

u(z) > n for any z € V, pt(K) <
pu(—o0) — n for any maximal clique K

UM = eZV | of G and pt(C) < p(—00)2= —n
for any odd cycle C' without chord and
length at least 5

)

u(z) > n for any z € V, pt(K) <
p(—o0) — n for any maximal element
U™ = peZ" | Kof # and it (C) < p(—00) 5 —n
for any odd cycle C without chord and
length at least 5
| u(2) > nforany z € V and pt(K) <
{M ez’ ‘ p(—o0) — n for any maximal clique of}

G
By Remark 4.5 and Fact 3.3, we see the following.

qU™ =

Lemma 4.7

Ex[HSTAB(G)| = €P KT*,  wpmstane) = € KT*,

MGL{(O) 'u,el,{(l)

Ex[TSTAB(G)| = @ KT*,  wprstasc) = @ KI*
) petd®

and

EK[QSTAB<G)] = @ KT“, WEK[QSTAB(@)] = @ KT*.

,LLun(O) Hequ(l)
In fact, the following fact holds.

Proposition 4.8 Letn € Z. Then

(n)
WELHSTAB(G)] — @ KT*,

N,EL{(”)
(n)
WE]K TSTAB(G)] — @ KT*
petd™
and -
Winastane) = @ K™
uequ(”)



Corollary 4.9 Ex[HSTAB(G)] (resp. Ex[TSTAB(G)], Ex[QSTAB(G)]) is
Gorenstein if and only if there are n € UV (resp. n € Uy, e qUY ) and
CelU (resp. C e U™V, ¢ € g™V ) with n+ ¢ = 0.

By estimating the condition in Corollary 4.9, we see the following.

Theorem 4.10 (1) Ex[HSTAB(G)] is Gorenstein if and only if

(a) Sizes of maximal cliques are constant (say n) and

(b) i.n=1,
1. n = 2 and there is no odd cycle without chord and length at
least 7 or

1. n > 3 and there is no odd cycle without chord and length at
least 5.

(2) Ex[TSTAB(G)] is Gorenstein if and only if
(a) E =0,

(b) G has no isolated vertex nor triangle and there is no odd cycle
without chord and length at least 7 or

(¢) all mazimal cliques of G have size at least 3 and there is no odd
cycle without chord and length at least 5.

(3) Ex|QSTAB(G)] is Gorenstein if and only if sizes of mazimal cliques
are constant.

Corollary 4.11 (1) [HT, Theorem 1] Let G be a cycle graph without
chord. Then Ex[STAB(G)| is Gorenstein if and only if the length of G
s even or less than 7.

(2) [OH, Theorem 2.1 (b)] Let G be a perfect graph. Then Ex[STAB(G)]
is Gorenstein if and only if the size of mazximal cliques are the same.
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