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Abstract

In 2009, Kimura proved a weak convergence theorem in Hilbert spaces. In
this paper, we attempt to extend this theorem for convex minimization prob-
lems in Hilbert spaces to that in complete CAT(1) spaces. As a result, we
obtain a new theorem.

1 Introduction

In this paper, we consider the following result for approximating a zero of an accretive
operator.

Theorem 1 (Kimura [1]). Let H be a Hilbert space, A an m-accretive operator of
H satisfying that A=10 # 0. Let {8,} and {vy,} be real sequences in [0,1] such that
S oo Bn = 00 and that both {B,} and {v,} converge to 0. Let {e,} be a sequence

in H such that Y -~ |len|| < co. For an initial point 1 € H, generate an iterative
sequence {x,} as follows:

Yn = (I + A)_lxna
Qn € [min{ﬁm || — ynH - 'Yn}a 1] N [07 1]7

Tp+1 = (1 - O‘n)xn + anyn + €n.

Then, x, — xo € A~10.



We also know that we can apply this theorem to the convex minimization problem.
In this paper, we extend it to the setting of complete CAT(1) spaces. In order to
prove our result, the notion of resolvent plays an important role. The definition of
resolvents is as follows [2]:

Jrx, = argmin{ f(y) + tan d(y, z,) sind(y, z,)},
yeX

where f: X — ]—00, 0] is a proper lower semicontinuous function.

2 Preliminaries

Let X be a uniquely geodesic space, and z,y,z € X. We take z,¥,Z € I_KQ such that
d(z,y) = | — gl ,d(y, z) = |§ — 2| ,d(2,z) = ||z — Z[|. The sets A and A are defined
by A = [z,y]U[y, 2] U[z,2] and A = [Z,§] U [y, 2] U [2,Z]. X is called a CAT(0) space
if for all A, p,q € A and their comparison points p, 7 € A, the inequality

d(p,q) < |Ip - qll

holds. Moreover, if d(x,y) + d(y, z) + d(z,z) < 27, we can take A(Z, 7, z) C S? such
that d(z,y) = ds=(7,9),d(y, z) = ds2(7, 2),d(z,2) = dg=(Z,7). X is called a CAT(1)
space if for all such A, p,q € A and their comparison points p, g € A, the inequality

holds. We say that a CAT (1) space X is admissible

d(w,w") <

v | 3

for all w,w’ € X.

Theorem 2 (Kimura and Kohsaka [2]). Let X be an admissible complete CAT(1)
space, f: X — ]—00,00] a proper convez lower semicontinuous function. For n > 0,
let Jys be the resolvent of nf. Let {x,} be a sequence defined by x1 € X and

Tng1 = QnTp D (1 — ap)Jdr, 12n

forn=1,2,... where {a,} is a sequence in [0, 1] and {\,} is a sequence of positive
real numbers such that > " (1 — a, )\, = 00. Then the following hold.

(i) The set argminy f is nonempty if and only if {Jx, xn} is spherically bounded
and sup,, d(Jx, t&n, Tn) < 7/2;

(i) +f argminy f is nonempty and sup,, o, < 1, then both {x,} and {Jy, rx,} are
A-convergent to an element r, of argminy f.



3  Main result

The following theorem is the main result of this paper.

Theorem 3. Let X be an admissible complete CAT(1) space. Let f : X — |—00, 0]
be a proper convex lower semicontinuous function and suppose that argmin f # (). Let
{Bn} and {y,} be real sequences in [0,1] such that > >, B, = oo and that both {5, }
and {7y} converge to 0. For an initial point x1 € X, generate a sequence {x,} as
follows:

Yn = fony
ay, € min{ B, d(xn, yn) — Y}, 1] N[0, 1],

Tpi1 = (1 - an)xn O anYn.
Suppose that one of the following conditions holds:

e inf,cnay, > 0;
o> X a, <oo.

A :
Then, x, — x¢ € argmin f.

Proof. 1If inf,,cy i, > 0, it is already shown by Theorem 2. So, we consider the case
that Y7 | a,, < oco. We show z, A zo. Put M = sup;cy d(y;,z;). Then

d(Tpt+1,Tn) = d((1 — an)Tn O ApYn, Tn)
= and(yna xn)
< a, M.

For m,n € N such that m < n, we have

d(l‘n, xm) S d(l‘n, xn—kl) + d(xn—17xn—2) + 4+ d(xm+17xm)
n—1 n—1 0o
= d(l‘j+1,l’j) S Z OéjM S Z osz.
j=m j=m

=m

<

Since > 7, v, is finite, {x,} is a Cauchy sequence. Therefore, z:, — x¢, and hence
A

Ty — X0.

Next, we show that there exists {n;} such that d(x,,,y,,) — 0. We focus on the
range of a,,. Put P = {n € N| oy, € [d(zn,yn) — n,1]N[0,1]} and Q = {n € N |
Ay, € [Bn, 1]}. Assume that there exists ng € N such that n € @ for all n > ng. Then

we have - -
00 = Zﬁné Zan<oo.

n=ng n=ng



This is a contradiction. Therefore for all ng € N, there exists n > ng such

that n € P. So, there exists {n;} C P such that n; > i for all i« € N. Then

an,; € [d(Zn;,Yn;) — Ynis 1], and we get d(p,, Yn,) — Tn; < an, < 1. We know that

oo an < oo, and this implies o, — 0. Hence we get lim; oo d(zp,,yn;) < O.

Therefore d(x,,,yn,) — 0. We also get y,,, — ¢ since x,, — xo and d(zy,,Yn,) — 0.
Next we show zy € argmin f. From the property of resolvents defined by

Jrx, = argmin{ f(y) + tan d(y, z,) sind(y, z,)},
yeX

for all y € X, we have

f(yn;) +tand(yn,, Tn,) sind(yn,, Tn;) < f(y) + tand(y, zn,) sind(y, Tn,).
Put t €]0,1[,w € X, and y = ty,, & (1 — t)w. Then,

f(ym) + tan d(yni7ajni) sin d(yni ) xm)
< f(tyn, ® (1 — t)w) + tand(ty,, & (1 — t)w, zy,) sind(ty,, & (1 — t)w, z,,)

< tf(yn) + (1 =) flw) + cos d(tyy, @ 21 —t)w, Tp,)

—cosd(tyn, ® (1 —t)w,zy,)
<tf(yn,) + (1 =) f(w)

sin d(Yn, , w)
- cos d(Yn, , Tn, ) sin(td(yn,, w)) + cos d(w, x,,) sin((1 — t)d(yn,, w))
cos d(Yn,, Tn,) sin(td(yn,, w)) + cos d(w, x,, ) sin((1 — t)d(yn,, w))
B sin d(Yn,, w)

Putting A; = d(yn,,xn,), Bi = d(yn,,w), and C; = d(w, z,,), we get,

cos A;sintB; + cos C; sin(1 — t)B;
sin B;

1
f(ynz) -+ m (tan Az sin Al +

sin B; < f(w)
— w).
cos A;sintB; 4+ cos C;sin(1 —)B; ) —

Letting ¢ — 1, we have

lim (L(tan A sinA, + cos A; sintB; —|—‘cos C;sin(1 —t)B;
t—1\1—1¢ sin B;
sin B;
"~ cos A; sintB; + cos C; sin(1 — t)B; )>
cos A; sintB; + cos C; sin(1 — t)B;
sin B;

t—1

d
= — lim 7 (tan A;sin A; +

sin Bz
cos A; sintB; + cos C; sin(1 — ) B;
4



= — lim
t—1

cos A; costB; - B; + cos C; cos(1 — t)B; - (—B;)
( sin BB;
sin B;(cos A; costB; - B; + cos C; cos(1 — t)B; - (—B;))
(cos A; sintB; 4 cos C;sin(1 — t) B;)? )
o (COS A;cos B; - B; +cosC; - (—B;) N sin B;(cos A; cos B; - B; + cos C; - (—Bz))>

n b (cos A; sin B;)?
= cos A;cos B; - B; +cosC; - (—B;)  cosA;cosB; - B; +cosC; - (—B;)
sin B; cos2A; sin B,
sin B; (COSA%' cos B; — cos C; + cos A Csssz : cos )
s B, (cos C; — cos A; cos B; + &8 (:(stQS ; cos )
i - 1
sin B; (cos € — cos A; cos Bi) <1 "’W Ai)
. — A 1
7 3 Bi + Bi 1 ; 1 '
sin B; (eos € cos cos By(1 — cos 4;)) ( cosZA; )

It is obvious that cos C; — cos B; — 0. Letting ¢« — oo, we have

B; 1
SnB, (cos C; — cos B; + cos B;(1 — cos A;)) <1 + COSQAZ‘)
d(zp,w) 1
- ———0+0)( 1+ -
sind(:co,w)( * )< +1>
= 0.
Hence we get
This inequality implies xy € argmin f. U
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