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Abstract

In this paper, we study the asymptotic behavior of orbits of nonexpansive semi-
groups in Banach spaces. We also establish a weak convergence theorem for two nor-
mally 2-generalized hybrid mappings and we give some convergence theorems.

1 Introduction

Let E be a real Banach space, let C be a nonempty subset of E. For a mapping 7 : C — E,
we denote by F(T) the set of fixed points of T and by A(T) the set of attractive points [25]
of T, 1i.e.,

() F(T)={zeC:Tz=1z};
(i) A(T)={z€H:||[Tx—z|| < ||x—z||, VxeC}.

A mapping T : C — C is called nonexpansive if ||Tx— Ty|| < ||[x—y|| for all x,y € C.

The behavior of the sequence of Picard iterates of T is one of the important problems in
metric fixed point theory because this allows us to approximate a fixed point in the simplest
way. Moreau [20] proved that if C is a closed subset of a Hilbert space and if F(T') has
nonempty interior, then for each x € C, the sequence {T"x} converge strongly to a point
in F(T). Kirk and Sims [12] generalized this result to Banach spaces. Grzesik, Kaczor,
Kuczumow and Reich [10] proved convergence of iterates of nonexpansive mappings: Let
C be a bounded closed and convex subset of a uniformly convex Banach space E. Assume
that C has nonempty interior and that it is locally uniformly rotund. Let 7" be a nonexpansive
mapping of C into itself and let x € C. If T has no fixed point in the interior of C, then
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there exists a unique point zy on the boundary dC of C such that each sequence {7"x : n =
1,2,3,...} converges strongly to zo. They [10] also proved the convergence of orbits of
one-parameter nonexpansive semigroups.

In this paper, we study the asymptotic behavior of orbits of nonexpansive semigroups
with no common fixed points in the interior of their domains (see [2]). Motivated by [10], we
give convergence theorems for abstract semigroups. We also establish a weak convergence
theorem for two normally 2-generalized hybrid mappings and we give some convergence
theorems.

2 Preliminaries and notations

Throughout this paper, we assume that E is a real Banach space with norm || - ||. We denote
by E* the topological dual space of E. We denote by N and R the set of all positive integers
and the set of all real numbers, respectively. We also denote by R™ the set of all nonnegative
real numbers. We write x,, — x (or ,}SE, X, = x) to indicate that the sequence {x,} of vectors

in E converges strongly to x. We also write x,, — x (or it w-1lim,_,.X,, = X) to indicate that
the sequence {x, } of vectors in E converges weakly to x. We also denote by (y,x*) the value
of x* € E* at y € E. For a subset A of E, coA and coA mean the convex hull of A and the
closure of convex hull of A, respectively.

Let S be a semitopological semigroup, i.e., S is a semigroup with a Hausdorff topology
such that for each a € S the mappings s — a-s and s — s-a from S to § are continuous.
In the case when S is commutative, we denote st by s+¢. Let B(S) be the Banach space
of all bounded real-valued functions defined on S with supremum norm and let C(S) be the
subspace of B(S) of all bounded real-valued continuous functions on S. For each s € S and
g € B(S), we can define an element ¢,g € B(S) by (4,g)(t) = g(st) for all t € S. We also
denote by ¢} the conjugate operator of ¢;. Let C(S)* be the dual space of C(S). A linear
functional u on C(S) is called a mean on C(S) if ||u|| = u(1) = 1. We often write p,(g(¢)) or
[g(t)du(t) instead of u(g) for u € C(S)* and g € C(S). A mean u on C(S) is called invariant
if u(¢sg) = u(g) foralls € Sand g € C(S). For s € S, we can define a point evaluation &; by
Os(g) = g(s) for every g € B(S). A convex combination of point evaluations is called a finite
mean on S. A finite mean p on S is also a mean on C(S) containing constants.

The following definition which was introduced by Takahashi [23] is crucial in the non-
linear ergodic theory for abstract semigroups (see also [11]). Let & be a continuous function
of S into E such that the weak closure of {A(t) : t € S} is weakly compact. Then, for any
p € C(S)* there exists a unique element /,, € E such that

(o'} = (Wi (1(0)%) = [ (h(0) ) da )

for all x* € E*. If it is a mean on C(S), then Ay, is contained in co{A(z) : t € S} (for example,
see [23, 24]). Sometimes, h, will be denoted by [A(t)du(t).

Throughout this paper, S is a commutative semitopological semigroup with identity. Let
C be a closed convex subset of a Banach space E. Then, a family . = {T'(s) : s € S} of
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mappings of C into itself is called a nonexpansive semigroup on C if it satisfies the following
conditions:

(@) T(s+1t)=T(s)T(¢) for all s,z € S;
(b) s~ T(s)x is continuous;
©) |IT(s)x—=T(s)y|| < |[x—y| forall x,y e Cand s € S.

We denote by F(.7) the set of common fixed points of 7'(¢),r € S. Let ¥ ={T(t) : t € S} be
a nonexpansive semigroup on C. Assume that for each x € C and x* € E*, the weak closure
of {T(t)x:t € S} is weakly compact. Let u be a mean on C(S). Following [21], we also
write 7y.x instead of [T (t)xdp(t) for x € C. We remark that 7, is nonexpansive on C and
Tux = x for each x € F(.%). If u is a finite mean, i.e.,

n n

u= Zaiat,' (ti € S,Cli > 07 Zai = 1)7
i=1 i=1

then

n
Tux =Y aT(5;)x.
i=1

[lx+ Il

A Banach space E is said to be strictly convex if < 1 forx,y € E with ||x|| =

|ly|]| =1 and x # y. In a strictly convex Banach space, we have thatif ||x|| = ||y = (1 — A1) x+
Ay|| forx,y € E and A € (0,1), then x =y. For every € with 0 < & <2, we define the mod-
ulus 8(¢€) of convexity of E by

[lx+ ¥l

() =int{1- 2 s < 1yl < -yl z e

A Banach space E is said to be uniformly convex if 8 (¢) > 0 for every € > 0. If E is
uniformly convex, then for r,€ with r > &€ > 0, we have § (£) > 0 and

S5 ()

for every x,y € E with ||x|| <, ||y]| < rand ||[x—y| > €. It is well-known that a uniformly
convex Banach space is reflexive and strictly convex. Let Sg = {x € E : ||x|| = 1} be unit
sphere in a Banach space E. A Banach space E is said to be locally uniformly rotund if for
each x € Sg and for each € € (0,2],

there exists 8 (x, €) > 0 such that

for each y € Sg with ||x —y|| > €, we have

X+Yy

1—
2

H > 8(x,€)
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For more details, see [18].

Let E be a Banach space, let C be a nonempty bounded closed and convex subset of E.
Assume that C have nonempty interior, that is, int(C) # 0. We say that C is locally uniformly
rotund if for each x € JC and for each € € (0,dy), where d, = sup{||x —y|| : y € C}, there
exists 0(x,€) > 0 such that for each y € C with ||x—y|| > €, we have

dist (’%,ac) - inf{

Let C be a nonempty bounded closed and convex subset of a Banach space E. Assume that

C have nonempty interior, that is, int(C) # @. We say that C is uniformly convex if for each

€ € (0,diam(C)), there exists M¢(€) > 0 such that for each x,y € C with ||[x—y|| > €, we
xt+y

have
dist (x;y,8C> ::inf{ 5T X e 8C} > nNele).

Let C be a subset of a Banach space E and let 7 be mapping of C into E. The mapping
T is said to be demiclosed if for any sequence {x,} C C the following implication hold:

X+Yy /
—X

X € 3C} > 0(x,€).

w-lim x, = x and lim ||Tx, —y|| =0
n—oo n—oo

imply that
Tx=y
(see [8]).
Theorem 2.1 ([8]). Let C be a nonempty closed and convex subset of a uniformly convex

Banach space E. Let T be nonexpansive mapping of C into itself and let I be the identity
mapping. Then, I — T is demiclosed at 0, that is,

w-1lim x,, = x and lim ||x, — Tx,|| =0
n—oo n—oo
imply that
Tx=x.

Throughout the rest of this paper, S is a commutative semitopological semigroup with
identity. The following theorem has been essentially established in [9] (see also [5, 6, 24]).

Theorem 2.2 ([9]). Let C be a nonempty bounded closed and convex subset of a uniformly
convex Banach space E. Let ¥ = {T(t) : t € S} be a nonexpansive semigroup on C. Then,
F () is nonempty.

The following theorem has been essentially established in [5] (see also [6, 9, 24]).

Theorem 2.3 ([S]). Let C be a closed and convex subset of a strictly convex Banach space
E. Let &/ ={T(t) : t € S} be a nonexpansive semigroup on C such that F(.%) # 0. Then,
the set F (%) is closed and convex.



3 Convergence theorems for nonexpansive semigroups

In this section, we give the convergence theorems for nonexpansive semigroups with no
common fixed points in the interior of their domains. Throughout the rest of this paper, S is
a commutative semitopological semigroup with identity.

For h € (0,00), we denote by Cj, the set CN{x € E : ||x — z9|| > h}. Let zp € C and let
x* € E* with ||x*|| = 1. We denote by Vj ., the hyperplane

{x € E:x"(x) =k}

which supports C at the point zg, where k € (0,00), x*(z9) = k.
The following was proved in [10].

Lemma 3.1 ([10]). Let E be a Banach space and let C be a bounded, closed and convex
subset of E. Assume that int(C) is nonempty, 0 € int(C) and that C is locally uniformly
rotund. Let 79 € dC, let x* € E* with ||x*|| = 1 and let the hyperplane

Vizg =1x€E :x"(x) =k}
which supports C at the point z be given, where k € (0,00). If r € (0,00) and the set
C,=CNn{xeE:|x—z|>r
is nonempty, then there exists k1 € R such that 0 < k; < k and
Cr C{x€E :x"(x) <k}
The following lemma plays an important role in our main results (see [4, 11, 22]).

Lemma 3.2 ([4]). Let C be a nonempty bounded, closed convex subset of a uniformly convex
Banach space E. Let S be a commutative semitopological semigroup with identity. Let
S ={T(t) :t € S} be a nonexpansive semigroup on C. Let { L, } be a sequence of means on
C(S) such that limy,_,e ||ty — i, || = O for each s € S. Then, for eacht € S,

li T, y—T()T, =0.
Jim sup [T,y =T ()T

A sequence {x,} in C is said to be an approximating sequence of a nonexpansive mapping
T:C—Cif
lim ||x, — Tx,|| = 0.
n—oo

(for example, see [10]). A sequence {x,} in C is said to be an approximating sequence of a
nonexpansive semigroup .’ = {T'(r) : t € S} if

i ||, — T (0)| = 0

for each t € S (for example, see [10]). We study the behavior of approximating sequences of
nonexpansive semigroups (see [2]).



Theorem 3.3 ([2]). Let E be a reflexive Banach space and let C be a bounded, closed and
convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.
Let S be a commutative semitopological semigroup with identity. Let . = {T(t):t € S} be
a nonexpansive semigroup on C. Assume that I — T (t) is demiclosed at O for each t € S. If
& ={T(t):t € S} has a unique common fixed point zy and zy lies on the boundary dC of C,
then every approximating sequence {x,} of . converges strongly to z.

We get convergence of orbits of nonexpansive semigroups with no common fixed points
in the interior of their domains (see [2] ).

Theorem 3.4 ([2]). Let E be a uniformly convex Banach space and let C be a bounded
closed and convex subset of E. Assume that C has nonempty interior and that it is locally
uniformly rotund. Let S be a commutative semitopological semigroup with identity. Let
S ={T(t):t € S} be a nonexpansive semigroup on C. If ¥ ={T(t) : t € S} has no common
fixed point in the interior of C, then there exists a unique point zy on the boundary dC of C
such that each orbit {T (t)x : t € S} converges strongly to z.

Using theorems 3.3 and 3.4, we get some convergence theorems (see [10]).

Let C be a closed convex subset of a Banach space E. Then, a family . = {T'(s) :s e R"}
of mappings of C into itself is called a one-parameter nonexpansive semigroup on C if it
satisfies the following conditions:

(@ T(s+1t)=T(s)T(¢) forall s,r € RT;

(b) T(0)x =x for each x € C;

(c) s+ T(s)x is continuous;

(d) |T(s)x—T(s)y|]| <|x—y| forall x,y € Cands € R*"

Using Theorem 3.3 and Lemma 3.2, we obtain the following convergence theorem (see
also [2, 7)).

Theorem 3.5. Let E be a uniformly convex Banach space and let C be a bounded, closed and
convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.
Let . = {T (t):t € S} be a nonexpansive semigroup on C. Assume that ¥ = {T(t):t € S}
has a unique common fixed point 7y and that zg lies on the boundary dC of C. Let {l, } be a
sequence of means on C(S) such that

Tim [, — €5 || = 0
foreach s € S. Let x € C and let {z,} be the sequence defined by

1 1
Zn=—X+ (1 — —) T,y,zn foreach ne€N.
n n

Then, {z,} converges strongly to z.



Using Theorem 3.3 and Lemma 3.2, we also obtain the following convergence theorem
(see also [2, 28]).

Theorem 3.6. Let E be a uniformly convex Banach space and let C be a bounded, closed and
convex subset of E with nonempty interior. Assume further that C is locally uniformly rotund.
Let . = {T (t):t € S} be a nonexpansive semigroup on C. Assume that ¥ = {T(t):t € S}
has a unique common fixed point 7y and that zg lies on the boundary dC of C. Let {1, } be a
sequence of means on C(S) such that

lim ||ty — €5 p1a]| = 0

foreach s € S. Let uy = x € C and let {u, } be the sequence defined by
1 1

Up = —tty_1+ (11—~ |Tyu, foreach neN.
n n

Then, {uy,} converges strongly to z.
Using theorem 3.4, we get the following theorems (see [2, 10]).

Theorem 3.7. Let E be a uniformly convex Banach space and let C be a bounded closed
and convex subset of E. Assume that C has nonempty interior and that it is locally uniformly
rotund. Let T be a nonexpansive mapping of C into itself. If T has no fixed point in the
interior of C, then there exists a unique point 7o on the boundary dC of C such that each
sequence {T"x:n=1,2,3,...} converges strongly to z.

Theorem 3.8. Let E be a uniformly convex Banach space and let C be a bounded closed
and convex subset of E. Assume that C has nonempty interior and that it is locally uniformly
rotund. Let ¥ = {T(t) :t € R"} be a one-parameter nonexpansive semigroup on C. If
& ={T(t) :t € R"} has no common fixed point in the interior of C, then there exists a
unique point 7o on the boundary dC of C such that each orbit {T(t)x:t € RT} converges
strongly to 7.

4 Weak convergence theorems

In this section, we establish a weak convergence theorem for two normally 2-generalized
hybrid mappings. We also give a convergence theorem for a generic 2-generalized hybrid
mapping.

Kohsaka and Takahashi [14], and Takahashi [26] introduced the following nonlinear
mappings.

A mapping T : C — H is said to be nonspreading [14] if

2||Tx—Ty||> < || Tox—y[|* + | Ty — ||



for all x,y € C. A mapping T : C — H is said to be hybrid [26] if
31 Tx—=Ty|* < =yl + | Tx = y|I* + | Ty — 2>

for all x,y € C. They proved fixed point theorems for such mappings (see also [15, 27]). In
general, nonspreading and hybrid mappings are not continuous mappings. Aoyama, lemoto,
Kohsaka and Takahashi [1] introduced the class of A-hybrid mappings in a Hilbert space.
This class contains the classes of nonexpansive mappings, nonspreading mappings, and hy-
brid mappings in a Hilbert space. Kocourek, Takahashi and Yao [13] introduced a broader
class of nonlinear mappings than the class of A-hybrid mappings in a Hilbert space. A map-
ping T : C — E is said to be generalized hybrid [13] if there are real numbers a, 3 such
that
o| Tx = Ty|[* + (1 — &) [|x — Ty[* < Bl Tx —y[>+ (1 = B)|lx— |

for all x,y € C. Maruyama, Takahashi and Yao [19] introduced a broad class of nonlin-
ear mappings called 2-generalized hybrid which contains generalized hybrid mappings in
a Hilbert space. Let C be a nonempty subset of H. A mapping T : C — C is said to be
2-generalized hybrid [19] if there exist real numbers o, 1, 0, B> such that

ou||T%x = Ty||* + ool Tx — Ty[|* + (1 — o1 — o) | — Ty
< BT x =y + Bol Tx =y (> + (1= Bi = Bo) [lx — >

for all x,y € C. Kondo and Takahashi [16] introduced the following class of nonlinear
mappings which covers 2-generalized hybrid mappings in a Hilbert space. A mapping
T : C — C is said to be normally 2-generalized hybrid [16] if there exist real numbers

oo, Bo, &1, B1, @, B2 such that
2
n=0

o+ o;+oy>0

and
|| T%x = Ty||* + o || Tx — Ty||* + ao}x — Ty||?

+ Bal| T2x = y[|* + By | Tx = yI|* + Bollx —y|* < 0

for all x,y € C. We call such a mapping T an (o, Bo, @1, B1, 02, B2 )-normally 2-generalized
hybrid mapping. We know that the class of (1—a,—(1— ), o, —,0,0)-normally 2-genera-
lized hybrid mappings is the class of generalized hybrid mappings. Now, we get the follow-
ing theorems (see [3]).

Theorem 4.1. Let C be a nonempty and convex subset of a Hilbert space H. Let S and T
be commutative normally 2-generalized hybrid mappings of C into itself such that A(S) N
A(T) # 0. Let Py be the metric projection from H onto A(S) NA(T). Let {ay,} be a sequence
of real numbers such that 0 < a < a, <b <1 fora,b € (0,1) with a < b and let {f,} be a
sequence of real numbers such that 0 < ¢ < B, <d < 1 for c,d € (0,1) with c < d. Suppose
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x; =x € C and {x,} is given by

k
Xprl =  OpXxp+ 1 - Ocn Z S"Vn,

Yn = ,ann 1 - ﬁn Z Tlxm

for each n € N. Then, {x,} converges weakly to a common attractive point z € A(S) N

A(T) , where z = lim,_,e Psx,. Additionally, if C is closed, then x, converges weakly to

7= li_r>n Prx,, where Pr is the metric projection from H onto F(S)NF (T).
n—oo

Recently, Kondo and Takahashi [17] introduced a broad class of mappings. A mapping

T : C — Cis called generic 2-generalized hybrid if there exist if ¢ j, B;, % € R(i, j =

such that

ool — ¥l + ctor [}x — Ty||* + oz ||x — T2y
+ouo[|Tx —y|I> + o || Tx = Ty||* + aua || Tx — T2y|?
+000[| T%x = y|I* + 01 | T2x — Ty||* + oo | T°x — T2y
+Bollx — Tx||* + By | Tx — T2x||* + B || T*x — x||*
+ly = TyI* + 1l Ty — T+ Ty —y|* <0

for all x,y € C. For Theorem 4.3, we will assume that 7 satisfies (4.1a) or (4.1b);

where

Ok + O > 0,000, 021, 022 > 0, 01 > 0,

ﬁ07ﬁ17ﬁ2 Z 0;'}’0‘1"}’1 Z 07Y2 2 0,
O%o + 01 > 0,002, 012,002 > 0,041 > 0,

B0+ﬁl 20732 2077/077177’2 207

Ok = Oo + 041 + Qi and og; = O + 0 + Olp;

0,1,2)

(4.1a)

(4.1b)

(4.1¢)

for i = 0,1,2. The class of generic 2-generalized hybrid mappings that satisfies (4.1a)
or (4.1b) contains nonexpansive mappings, generalized hybrid mappings and normally 2-
generalized hybrid mappings as special cases.

Theorem 4.2 ([17]). Let C be a nonempty subset of a Hilbert space H. Let T be a generic
2-generalized hybrid mappings such that F(T) # 0. Suppose that T satisfies one of the
following conditions :

where o; and o (i = 0,1,2) are defined in (4.1c) . Then, T is quasi-nonexpansive.

Oor + 01 > 0,00k > 0, 015 > 0, By, B, B2 > 0;
%o + 01 > 0,040 > 0,041 > 0,%,M,% =0,

9

(4.2a)
(4.2b)



We get the following theorem (see [3]).

Theorem 4.3. Let C be a nonempty closed and convex subset of a Hilbert space H. Let
S and T be commutative generic 2-generalized hybrid mappings of C into itself such that
F(S)NF(T) # 0. Suppose that S and T satisfy (4.1a) or (4.1b). Let P be the metric projection
from H onto F(S)NF(T). Let {a,} be a sequence of real numbers such that 0 < a < o, <
b <1 fora,be (0,1) witha<b and let {B,} be a sequence of real numbers such that
0<c<B,<d<1forc,d e (0,1)withc <d. Suppose x| = x € C and {x,} is given by

Xnt1 = OpXp + 1 - Ocn Z Skym
Yn = ,ann+ 1_Bn ZTxm

for each n € N. Then, {x,} converges weakly to a common fixed point z € F(S)NF(T) ,
where 7 = lim;, 0o Px,,.
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