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1 Main results

This article is based on a joint work with Professor Taka-aki Tanaka. We denote
by Z-, the set of nonnegative integers, by Q the field of algebraic numbers, and

by Q" the set of nonzero algebraic numbers. Let { Ry }x>0 be a linear recurrence of
nonnegative integers satisfying

Rk+n - Cle-i-n—l + -+ Can (k Z O)a (1)

where n > 2, Ry, ..., R,_1 are not all zero, and ¢y, ..., c, are nonnegative integers
with ¢, # 0. Define the polynomial associated with (1) by

P(X)=X"—e X" —ii— .

Throughout this article, we assume the following three conditions (R1)—(R3) on
{Rr} ez

(R1) ®(x1) #0.
(R2) The ratio of any pair of distinct roots of ®(X) is not a root of unity.
(R3) {Rk}r>0 is not a geometric progression.

We note that if { R, x>0 satisfies the conditions (R1) and (R2), then Ry = cp*+o(p"),
where ¢ > 0 and p > 1 (cf. Tanaka [4, Remark 4]). Let a4, ..., as be multiplicatively

independent algebraic numbers with 0 < |a;| <1 (1 <14 <s) and y,...,ys complex
variables. We write y := (y1,...,¥s). For each 1 <7 < s, we define
Gily) =] (1= af"y), Hy) = — (2)
k=0 k=0 i Yi



and for each algebraic number 3, we define
Nig=#{k>0]a % =3} = or% Gi(y;). (3)
Yi=

Moreover, for each 8 = (f31,..., ;) € Q°, we denote

Mg :={m = (ma,...,ms) € Z: | m; = Ni, for all 1 <i < s}.

Let
=T Gitw). H O(y) =G(y)H(y). (4)
i=1 o =1 1~ a
For an analytic function f(y) and a vector m = (my, ..., m;) € Z3,, we denote

am1++msf

)y Ly
f™(y) aygnl---ay;ns@)

Main Theorem. Suppose that {Ry}x>o satisfies the conditions (R1)—(R3). Then
the infinite set

{0™(B) | BeQ’, me Mg}

15 algebraically independent.

As a corollary to this theorem, we obtain an explicit example of an entire
function with arbitrary number s of variables having the property that the val-
ues and the partial derivatives of any order at any distinct algebraic points are
algebraically independent. Let Z-. be the set of positive integers. Suppose that
{Ry }x>o0 satisfies the conditions (R1)—(R3). Assume in addition that {Ry}r>o is
strictly increasing. Then N;5 < 1 for all 8 € Q and so 72, is a subset of
Mg for all B € Q°. Hence {8(’”) ‘ BecQ’, me Z>0} is an infinite subset
of {O™(B)|B € Q’, me Mg} Therefore the main theorem implies that the
infinite set {©™)(3)

0} is algebraically independent. Letting

Rki +Ry

0O i —a,
=y)=7—F>(y) =Gy : (5)
Oya -~ - Iys kh...Zk;,l;O, g (1- a ) (1 — yz)

ki ksl

we obtain the following

Corollary 1. Suppose that { Ri }r>o satisfies the the conditions (R1)—(R3). Assume
in addition that { Ry }x>o is strictly increasing. Then the infinite set

{E™(B) | BeQ’, meZ}

15 algebraically independent.



Example 1. Let py,...,ps be distinct rational primes and {Fy}xr>o the Fibonacci
numbers defined by

F():O, Flz]_, Fk+2:Fk+l+Fk (kZO)
Putting a; := p; ' (1 < i < s) and regarding {Fj 2}r>0 as { Ry }r>0, we define the
function =Z(y) by (5), namely,

s —Fki—Fl

- —F - -D;
=TT -r") ¥
i=1 k=2 kl,“.,ks,l;z i (L=p; ") (X —p ys)
K1, ksl

[1]

Then by Corollary 1 the infinite set
{Z(B) | BT, mez,}
is algebraically independent.

In the case of s = 1, the main theorem is deduced from the following previous re-
sult of the author, which extends Tanaka’s previous result [6] asserting the algebraic
independency of the infinite set

{G(m)(ﬁ) ’ B e @X \ {a_Rk}kzo, m > 0} ‘

Proposition 1 (A special case of Theorem 1.7 of Ide [1]). Suppose that {Ry}i>o0
satisfies the the conditions (R1)—(R3). Then, if s =1, then the infinite set

[T, mz Ny UG O | m21)
(: {-e™ )| seqQ, m> Nﬁ}U{G(Nﬁ)(B) ’ 8 e@x})

is algebraically independent, where Ng .= Ny g for each 8 € Q.

For obtaining the entire main theorem, we actually show the following, which
includes the main theorem for the case of s > 2.

Theorem 1. Suppose that { Ry }i>o satisfies the conditions (R1)—(R3). Assume in
addition that s > 2. Then the infinite set

{0™(B) | BeQ’, me Mg}
U{c™ @) |1<i<s BT, m= N}
U{Gm)(O)‘lgigs, mz1}

15 algebraically independent.

(
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Theorem 1 is deduced from the following theorem together with the lemmas and
the theorem stated in the next section.

Theorem 2. Suppose that { Ry }r>o satisfies the conditions (R1)—(R3). Assume in
addition that s > 2. Then the infinite set

{H™(B) | B € B, meZ,}
U{Gi(B) |1 <i<s, BeB\{0}}
U{H(m )‘1§z’§s,6€3,m20}

7

15 algebraically independent, where

B::@\U{a;Rk|k20}:{ﬁ6@|Niﬁ:0f0raﬂ1§z’§s}.

i=1

The proof of Theorem 2 is based on Mahler’s method (cf. [2, 3]) and consists
of the following four steps: First, we construct an sn-dimensional algebraic point
a and Mabhler functions hgm(2), ¢i5(2), higm(z) of sn variables z = (211, .. ., Zsn)

such that H™(B) = hgm(a), Gi(B) = gis(e), Hz-(m)(ﬁ) = h;gm(a), where n is
the length of the recurrence formula (1). Secondly, using Kubota’s criterion for
the algebraic independence of the values of Mahler functions, we reduce the alge-
braic independence of the values hgm, (@), g s(a), hi gm(c) to that of the functions
hgm(2), gi5(2), hig.m(z) themselves over the rational function field Q(z). Thirdly,
using Kubota’s criterion for the algebraic independence of Mahler functions them-
selves, we reduce the algebraic independence of the functions above to their linear
independence and their multiplicative independence. (For these two criteria for the
algebraic independence, see Kubota [2].) Finally, multiplexing Tanaka’s result [5]
on the rational function solutions of certain functional equations, we prove the lin-
ear independence and the multiplicative independence mentioned above. We omit
further details of the proof of Theorem 2 in this article.

2 Proof of Theorem 1

For each 1 <17 < s, let {a,(f)}kzo be a sequence of algebraic numbers satisfying

[e.e]

> lay| < oo

k=0

and let

o0 (4)

= ﬁ (1 —a y) o hiy) =) L() (6)

k=0 ko L — @, ¥i



Define
= Hgi(yi), Z mom 0(y) = g(y)h(y).  (7)

First we show the following lemmas, which assert that the functions in (6) and
(7) satisfy ‘invertible’ algebraic relations.

Lemma 1. Let m € Z>o and let Xo, ..., X,,—1 and Yi,...,Y,, be variables. Then
the following equations hold.

(i) For anym >0,
gz(m)(yi) = gi(yi) Am (hi(yz‘)> R hz(m_l)(yi)) (lsiss), (®)
where Ay =1 and A,(Xo, ..., Xim-1) € Z[Xoy ..., Xon—1]-

(ii) For any m > 0,

(m+1) 1o (m) ..

where By :=0 and B,,(Y1,...,Yn) € Z[Y1,..., Y]

Proof. Since ¢i(y;) = —g;(y;)hi(y;), we see inductively that, for any m > 1,

o™ (1) = —g: A"V @) + 9: ) A (), h VW) (10)

where A =0 and A%, (Xo, ..., Xm_2) € Z[Xo, ..., Xm_2] (m > 2). Letting

1 (m:())v
An(Xor s Xon 1) =
( 0 1) { — Xm—l + A;(X(J) s aXm—Q) (m 2 ]')’

we get (8). By (10) we have
(m-l—l)( )

h () = —H

{ + A (hi(we), - B (s

for any m > 0. Therefore, defining
Bm(Yb e aYm) = A:n+1(§/17 YQ + Bl(}/l)a s >Ym + Bm—l(}/la LI aYm—l))

inductively on m > 0, we obtain (9). O



Lemma 2. For anym = (my,...,my) € Z,, let X;, (1 <i<s5, 0< p<m;—1),
}/i,u (1 SZS S, 1 S % S mi); andZM (’J': (/'1’17"'7/’L8>7 0 S 2% S mg, N?’ém>
be variables. Set Xy = (Xip)ips Ym = (Yip)ip, and Zp, = (Z,)u. Then the
following hold.

(i)
0 (y) = W)™ (1) + (W) Con (X, Zin) |y 40 70y > (11)
where Cp(Xom, Zim) € Z[ X, Zm).
(i)

(my oy _ 0™ (Y)
" 9(y)

where Dy (Y, Zm) € Z[Ym, Zm).

4 Don(Yoms Zo) ‘ (12)

Yiu=—0" (4i)/9i (i), Zu=0W (y)/g(y)

Proof. Since 0(y) = g(y)h(y), using (8), we obtain

= Y <H (’;’j?)gE“i)(yi)) B ()
)’ 1

i=1

B=(p1 55 phs),
0<p;<m; (1<i<s),
n#0

for any m € Z%,, which implies (11). Thereby we have

(m) _ 0™ (y)
" 9(y)

- Cm(Xm> Zm) X

iu=h" (i), Zu=hm(y)

Hence, noting (9) and defining

Din(Yon, Zim)

. /
== Cn(Xm, Zpn) | Xo =Yoo+ Bu(Yia Yo, Zy=Zu+Dy(Ya Z)

inductively with respect to the lexicographical order of Z%,, where Z, (pn =
(1, ps), 0 < g < my, @ # m) are variables and Zj,, = (Z},),, we obtain
(12). O



Next we show the existence of invertible linear relations between the values of
the above functions and those of ‘shifted’ functions defined below. Let 5y := 0 and
let 31,...,8; be any nonzero distinct algebraic numbers. Similarly to the numbers
Nig, (1 <i <5, 0<j<J)defined by (3), we define the numbers n; ; (1 < i <
s, 0<j<J) by

=#{k>0]a £0, () =5} = ord gi(y;) (1<i<s 0<j<J).
e
For each j = (j1,...,7Js) € {0,...,J}%, let

Bj = (/le""’ﬁjs)’ n; = (nl,jv""n&js)'
Since a,(cl) — 0 as k tends to infinity for all 1 < ¢ < s, there exists a sufficiently
large integer ko such that 1 — ak)ﬁj 7é 0(1<i<s, 1<j< J) for all k > k.
Let @ == ay),, (k> 0). Let g:(y), hi(yi) (1 <i < s) and g(y), h(y), O(y) be the
functions given respectively by (6) and (7) with the sequences {Zi,(f)}kzo (1<i<s)
in place of {ag)}kzo (1 <i<s). Let M be any nonnegative integer and define the
finite sets S; and 7} (I = 1,2,3) of the values by

m—l—nu BJ ‘1<z<3 1< <, 0<m<M+1}

(
g™ ’ 1<i<s 1§m§M+Q,

=1
{ <i<
= {6 glmms) ( Bi)|3€{0,....J}, me{o,... M}*},

and

o

T, {Wm ‘1<w¢1<]<Jo<m<M+Q

TQ::{QW ‘1<z<s 1<m<M+1}
B {3 |7 007 me (0. Y.

Let N, = #S,(= #1;) (I = 1,2,3). We denote by Ly the set of the N x N lower
triangular matrices with entries in Q whose diagonal entries are nonzero. We note
that Ly is a subset of GLy(Q). For any finite set A, let A* be a column vector
whose components are given by a permutation of the elements of A. The following
theorem plays a crucial role in the proof of Theorem 1.

Theorem 3. There exist S; and T;* (I = 1,2,3) corresponding respectively to the
sets Sp and Ty (I = 1,2,3) such that the following hold, so that Q[S; U Sy U S| =
QT UTy UTs.



(i) ST = LTy, where Ly € Ly, .
(i) S5 = LTy (mod @Nz), where Ly € L, .
(iii) S% = LTy (mod Q[T} U Ty)™?), where Ls € Ly, .

Proof. First, we prove (i) of the theorem. For this purpose, we fix 1 < ¢ < s and
1 < j < J and represent g™ " '(8;) (0 < m < M +1) as linear combinations of

37 (8;) (0 <m < M +1). We define

ko—1

P(y) = (1-6'y)" €Qlul. Q)= ] 1 -au) €Tyl

k=0
aD#67?

Since -
giw) = [T =a’v) x T] (0 = af’u) = Pu)Qwi)ai(wy),
k=0 k=ko

we see that, for 0 <m < M +1,

m + nm

h) pQ™ M (8,)5(8)),

m—h

(m+n;,5) .
9i 7 (By) = E (n ,
J— 27]

h=0

where p := P™.9)(y;) € Q. Hence we have

o (8)) mo 0 5(5)

amy | [t o)

. (e G
G (5 ) * (M) pa a8

where ¢ = Q(p;) € Q", which implies (i) of the theorem. In the same way, we
obtain (ii), noting that ¢;(0) =1€ Q (1 <i < s).
In the remaining part of the proof we show (iii). Since

ww=<ﬁ?f@—ﬁ@ﬁa@

i=1 k=0

and since
ko—1 s (i)
(%)

hy) =hy) + S T[4

b0 i=1 L — a3 Y

8



we obtain a decomposition

0(y) = 01(y) + 62(y), (13)
where
s ko—1 ‘ _
(TTTT (o) )
i=1 k=0
and
ko—1 s ko—1
= | Y Ia T1—alw) | 3w
k=0 i=1 k=0
K #k

Fix 3 = (j1,...,Js) € {0,...,J}*. In order to prove (iii), we represent 9§m+nj)(,8j)
(m € {0,..., M}*) as linear combinations of §(™)(3;) (m € {0,..., M}*) and show
that Qéernj)(,Bj) (m €{0,...,M}*) are elements of Q[T} U T3]. Let

]1 = {ZG {1a'--78} |jl7é0}> IZ = {’LG {1a'--78} |jz:0}
We define

ko—1
Pi(yi) = (1= B;'y)" 5 € Qlua],  Qi(ys) = H (1—ay;) € Qly]
k=0
af)#8; !
for each i € I; and define
ko—1 ‘
Ri(y:) = [[ (1= ¢{’y:) € Qly]
k=0

for each i € I,. Then we have

(HP (i) Qi yz> (HR yz>9
i€l icly

Hence, for m = (my,...,my) € {0,..., M}* we have
(m+n;) _ m; + N, j, (mi—hs)
CHECHE DY (H (n B hﬁ,)m (85)
h=(h1,....hs) ien N M

0<h;<m; (1<i<s)

>< (H (Z@')Rﬁmi‘hfkm) i (s;). (14

i€l



We note that the coefficient of (™) (B;) in the right-hand side of (14) is a nonzero
algebraic number
m; + N g,
| | bigi,
, my
i€l

where p; = Pi(m’“)(yi) €Q”" and ¢, = Qi(B;,) € Q" forie 1.
Next, we define

Ui(y:) = (1 — 85 ;)<= e Qly]

for each 7 € I; and let

ko—1 s ko—1
Vi) = | > [l TT=alv) | T Uiw)™ € Q.
k=0 i=1 z:;g el

Then we have

0>(y) = (H Uz-(yz»)) V(y)a(y).

i€l
Hence, for m = (my,...,m,) € {0,..., M}* we have
(m+ny ) m; + N j; ~(hi)
0 N = (5.
2 (85) Z (H (max{nij. — 1,0} ml — by hz‘>u 9; (ﬁjl))
h=(h1,....hs) i€l Ji

0<h;<m!, (1<i<s)

x (H (Zi)aﬁ”m)) Ve (g,

i€l
€ Q[T U Ty, (15)
where m; = m; + min{l,n,;;} = m; + n;;, — max{n;;, — 1,0} (1 < i < s),
m' = (m),...,m.), and u; = Ui(maX{ni’ji_l’o})(yi) € @X (¢ € I). We consider
the lexicographical order of {0,..., M}* and let §; and 6; be column vectors whose

components are given by permuting the elements of the sets {(™+")(3;) | m €
{0,...,M}*} and {0/™)(B;) | m € {0,..., M}*} in ascending order of m, respec-
tively. Then, from (13), (14), and (15), we see that there exists an element L;

of L(ar41)s such that 8; = L;0; (mod Q[T; U Tp)™*1%) which implies (iii) of the
theorem. 0

Remark 1. In the last part of the proof above, we can explicitly represent the
coefficient matrix L; € L(ar41)s as a Kronecker product of s elements of L4 as

10



follows. For each i € {1,...,s}, let L;; = (ZSL) )m.n be the element of L/, defined
by
( ( m—1-+ i j;

QUMB) (e, 1<h<m<M+1
L e ) e h 1S hsms b,

h—1) "
0 1<m<h<M+1),

(i ._ -1
o (m )R(m‘h)(O) (ieh, 1<h<m<M+1),

\

namely,
( Pigi
(Yrre) g O
0 . €Ly (1€ ),
k MR35 pags
Lj;= ( " )pq
1
0 |
N €Ly (1€Dh).
k 1

\

Then, noting that the components of 8; and §j are arranged in ascending lexico-
graphical order of m € {0,..., M}*, we see that

Li=Lj1®Lj2® - ®Ljs € L),
where ® denotes the Kronecker product.

Proof of Theorem 1. Let 5y := 0 and let fy,. .., 3; be any nonzero distinct algebraic
numbers. For the simplicity we denote N;; == N;p, (1 <i<s, 0<j <J). For
any j = (j1,...,7Js) € {0,...,J}% let Nj == (Nyj,,...,Ns;,). In order to prove
Theorem 1, it is enough to prove that, for any sufficiently large nonnegative integer
M, the finite set

S = {0 (@) | j €{0,..., T}, me{0,..., M}'}
U{Ggmw,j)(ﬁj) ‘1955, 1<j<J o§m§M+1}

U{emo|1<i<s 1<m<m+a)

is algebraically independent. Since R, — oo as k tends to infinity, there exists a
sufficiently large integer ko such that 1 —a;*8; #0 (1 <i<s, 1 <j < J) for all

11



k > ko. Let Ry, := Ryix, (k> 0). We note that the linear recurrence { Ry} 50 also
satisfies the conditions (R1)—~(R3) stated in Section 1. Let Gilys), Hi(y:) (1 <i<s)
and G(y), H(y), ©(y) be the functions given respectively by (2) and (4) with
{Ry,} 10 in place of { Ry biso. Let

1= {6™(8;) ‘je{o... Ty, me o, My
u{a
U{Ggm) ‘1§z§s,1§m§M+l}

™ (5;) ‘1<z<s 1<j<J 0<m<M—|—1}

and
U= {H<m>(,6 ) ‘_7 e {0,...,J}, me{O,...,M}S}
U{Gio) [1<i<s 1<)
U{ﬁffmwj)\lsfiSS, 0<j<J 0<m< M},

By Theorem 3, we see that Q[S] = Q[T']. Moreover, Q(T') = Q(U) since

(Rl b
G(y)

:Z[{ﬁ(m) ‘mG{O { , ‘1<z<s 0<m<M}]

1 <1< s, 1<m<M+1}

by Lemmas 1 and 2 and since Gi(O) =1, Gi(ﬁj) #0(1<i<s, 1<j<J). Noting
that #5 = #T = #U, we see that the algebraic independency of S is equivalent
to_that of U. This concludes the proof since Theorem 2 for the linear recurrence
{ Ry }k>0 asserts that U is algebraically independent. O
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