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1 Introduction
Let k > 4 be an even integer, H = {z € C | Im(z) > 0} be the complex upper

half plane and I' = SLy(Z). The standard fundamental domain for I' is given as
follows.

F(1) :{zeH

|| > 1, —% < Re(z) < 0}

U{ZGH

1
|z| > 1, 0<Re(z)<§}.

The Eisenstein series of weight £ for I' is a function on H defined by

Ek(z):% D> (ez+d)” _1——20,“ (1)

c,dEZ
(e,d)=1

where q = €*™# By, is the kth Bernoulli number, and o;_;(n) = > din d*=1. Then
E) is a modular form of weight £ for I'

In 1970, Rankin and Swinnerton-Dyer proved that all of the zeros of Fj on [F,
lie on the lower boundary arc[9]. Since then, the locations of the zeros of several
types of holomorphic (or weakly holomorphic) modular forms have been studied
by using the method introduced in [9](It is frequently called the RSD method).
The RSD method is very straightforward, but it yields nontrivial results.

In 2008, Duke and Jenkins studied weakly holomorphic modular forms for I and
constructed an integral formula of standard basis and studied their zeros[3]. The
integral formula allows us to investigate the zeros of certain weakly holomorphic



modular forms. Choi and Kim found a generalized integral formula for the Fricke
groups of prime levels with genus zero[2].

In this paper, we introduce some results of the locations and transcendency of
zeros of certain weakly holomorphic modular forms for the Fricke groups.

2 Fundamental domain of ['j(p) for p =2,3,5,7

a b

Let p be a prime number, [y(p) = {(c d) €l | ¢=0 (mod p)} be the

congruence subgroup of level p. We set the Fricke group of level p by

Tile) = Novao(Tofo) = T U ( [ ) T

For p = 2,3,5,7, The standard fundamental domain of I'§(p) denoted by F*(p) are
given as follows.

(i) When p = 2,3,

1 1
F*(p) = {z ceH| |z| > —, —= <Re(z) < 0}
p
1
U{ZEH lz| > —, 0<Re(z)<—}
p
Pp

Figure 1: F*(p) (p=2,3)



(ii) When p = 5,7,

1 1 1 1
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Figure 2: F*(p) (p=5,7)
Here, we put p, = 5+ 3, s = =3+ 55 P51 = =53+ 55 P2 = —5 + 5,

_ 1 i _ 5 V3,
P11 =—3+t 37 and prp = —1; + Y70

3 The locations of the zeros

3.1 The Eisenstein series
The Eisenstein series of weight k > 4 for I'j(p) is defined by
1

E(2) = m(Ek(Z) +p? By (p2)).

At first, we briefly recall the RSD method introduced in [9]. The RSD method is
based on considering the following function

F(0) = e B, (?), 0 € (0,7) (2)

and the valence formula for I' given by

1 1 Lk
vool ) F gulf) ¥ oo+ D wlf) =15
pti, =LHYE
pel\H



where f is a holomorphic modular form of weight k and v,(f) is the order of f
at p. Rankin and Swinnerton-Dyer proved that Fj is real valued function. Picking
out the four terms of the right hand side of (1) with ¢* 4+ d? = 1, they showed that

k0
Fi.(0) — 2cos 5

<2 (3)

for all 6 € [g, %’T] By using intermediate value theorem, the valence formula,
and careful estimates of E, at ¢ and _12‘@
zeros of Ej, on F*(1).

Second, we shall applicate their method in the case of I'§(p) for p = 2,3,5,7.
By applying the above method, Miezaki, Nozaki, and Shigezumi constructed the

RSD method for p = 2,3 and proved the following theorem.

, we can obtain the distribution of the

Theorem 3.1. [8] Let p = 2,3 and k > 4 be an even integer. Then all of the zeros
of Ej;, on F*(p) lie on the lower boundary arc.

In [12], Shigezumi proved similar results for p = 5,7 under some assumptions.
His results are incomplete because they allowed infinitely many exceptions about
k. Our first main result is giving the solution of this problem.

Theorem 3.2 (K). Let p = 5,7 and k > 4 be an even integer. Then all of the
zeros of By, on F*(p) lie on the lower boundary arcs.

The following is a short proof of Theorem 3.2 for p = 5. Let As be the lower
boundary arcs of F*(5). Then As consists of two arcs of radiuses \/ig and ﬁg

centered at 0 and —3 respectively(See Figure 2). More precisely

As = As,l U As,z U {%» P51, ﬂs,z}

A;; = {
+ —e

A, =
v { 2v/5
and as is the angle such that tan as = 2.
As analogies of I}, we define

. ko 1 T
FkSl(e) ez Eyg (%66) , b€ [5,54'015} ;
i 1 1 . m
FI:,S,Q(G) = G%Elis (_5 + 2_\/561(7?) , 0 € [@5, 5}

where
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Then we can write

Fisn(0) =5 3 {(ce? +VBde )+ (et 1 VBAH) L (@)

(e,d)=1

| | |
FI:,572(‘9> = 5 Z {(Ceg + ngefgg)fk + (067?9 4 \/5de?9>7k}

+5 E {(ce?e +V5de™ ) F 4 (ce % + \/Sde?e)_k} . (5)
(e,d)=1
5fc, 2fed

It is obvious that (4) and (5) are invariant under the complex conjugate, and hence
Fys i (j = 1,2) are real valued functions. Unfortunately, Fy'; ; does not satisfy an
inequality like (3) on whole interval. To resolve this problem, we consider the first
few terms of (4) and (5). We define

Fan@) =5 3 {(ee¥ + VB E) 4 (e 4 VEde¥) ]
(e, d)=(1,0),
+(2,1)
k6 6 0 _ 8 0\ L
:2(30874—(262 +VBe 2)F 4 (277 +VBe7 )k,

fk,5,2(9)—2 Z {(CG +V/5Bde 2) " 4 (ce” 2 +V/hde?) }

(c,d)==£(1,0)
+ ) Z {(ce?g +Vbde 7) 7k + (66—7" - ﬁde?g)‘k}
(e,d)==%(1,~1)
i0 o\ —k i0 0\ —k
ko e? —+/be 2 e 2 —+/he?
Sresm il )l )

and
RZ,s,j(9) = FI:,S,j(‘g) - fl:,5,j(9)'
Then Rj 5 ; contributes little to the behavior of Fy; ; by the following lemma.



Lemma 3.1. For k > 4, we have
160
-3
160 /1 i 1\2 260V/13 [ 4\°®
iz 2% < () () 2B (1)
+

\<R?sy1>’( o) <ok () k—@

k k
2

(Risa) (0 )|<fk:( )+ 22 () +“’;7(2“_3’;(19) ,

By Lemma 3.1 and some careful estimates of f; 5 . around at the end points of
interval, we can prove the following lemmas.
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Lemma 3.2. Let k > 40 be an even integer. Then we have
(i) |F,j7571(9) — 2cos %| <1l (0el5,5+as— 3k]),
(i) [Fy55(0) —2cos®| <1 (0 € [as+ 2%, 7).

Lemma 3.3. Let k > 40 be an even integer.
(1) When k=0 (mod 4), we have

sgn( £y, (5 + as)) = sen(fi1 (5 + as)),
sgn(Fy5(as)) = sgn(fi»(as))-

(ii) When k =2 (mod 4), we have F}; (5 + as) = Fyy(as) =0 and

sgn((Fi1)'(5 + as)) = sen((fr,)'(5 + as)),
sgn((Fy,) (as)) = sgn((fi2)'(

Lemmas 3.2, 3.3, and the intermediate value theorem tell us that £y ; has at
b k=0 (mod 4
st {6 (h=0 (mod )
(5] —1 (k=2 (mod 4))
from the valence formula for I'§(5) when k£ > 40.

distinct zeros on the arcs. Theorem 3.2 follows



Proposition 3.1. Let f be a holomorphic modular form for I'§(5) of weight k > 4,
which 1s not identically zero. We have

vel) 4 50 (D 30 (D 4 gtmaD+ 3wl =1

P#ﬁ-p&l,pz’),z
pEF*(5)

The proof of Proposition 3.1 is very similar to that of the valence formula for
[ (see [11]). When 4 < k < 38, we can check directly that Theorem 3.2 is true in
each case.

3.2 The natural basis

Let p =1,2,3,5,7. A holomorphic function f on H is a weakly holomorphic
modular form of weight k € 27Z for I'j(p) if f satisfies

b
- f (Zjid> = (cz +d)* f(2) for any z € H, (Z Z) e I'y(p).
- f has a g—expansion of the form f(z) = Z ag(n)q"”

neZ
such that ay(n) = 0 for almost all n < 0.

We denote the space of weakly holomorphic modular forms of weight k for I'}(p)
by M;,(T5(p))-

12 ifp=1,3,7
Put 6§ =<8 if p=2 and m' = my,;, = 2160, +dim S,, (U (p)). Theorem

4 ifp=>5
2.4 of [2] says that there exists a unique weakly holomorphic modular form f,, €
M}(Td (p)) such that

frm(2) = a"" +O0(¢™*)

for each integer m > —m/. Then { fxm }m>_m forms a natural basis for M (T5(p)).
We introduce some results of the locations of the zeros of f; ,,, without proofs.

Theorem 3.3. [3, Theorem 1] Let { fim }m>—ms be the natural basis for M}(T). If
m > |lg| — Ly, then all of the zeros of fym in F*(1) lie on the arc.

Theorem 3.4. [1, Theorem 1.2] Let { fi, . }m>—ms be the natural basis for M (T;(2)).
If m > 2|lx| — by, + 8, then all of the zeros of frm in F*(2) lie on the arc.



Theorem 3.5. [5, Theorem 1.1] Let { fi, . }m>—ms be the natural basis for M (T;(3)).
If m > 18|¢x| + 23, then all of the zeros of fim in F*(3) lie on the arc.

Theorem 3.6. [7] Let p = 5,7 and { fr..n bm>_m be the natural basis for M. (T%(p)).
If m is sufficiently large, then all of the zeros of fim in F*(p) lie on the arcs.

4 The transcendency of the zeros

In [6], Kohnen proved that all of the zeros of Ej, except for the points equivalent
to ¢ or _1+T\/§” under the action of I' are transcendental. The proof is based on the
theory of complex multiplication and the result of [9]. Gun and Saha generalize his
method and obtain many result about the transcendency of the zeros of modular
forms for several groups[4]. For example, they proved similar results of [6] for the
natural basis for M;(T'), Ej,, and Ej ;. The author considered the cases of I';(5)

and ['§(7). Our second result is the following.

Theorem 4.1. Letp=5,7, k€ 2Z, f = anq™ € M(T%(p)) such that

n>ng
e a, €Q for any n.
e All of the zeros of f on F*(p) lie on the lower boundary arcs.

If zo € H is a zero of f which is not equivalent to the following points, then zy is
transcendental.

(i) p=5

“14+v19 —1+2 -3++1li —-2+i —5++/5i
10 ' 5 ' 10 ' 5 ' 10

4

(i) p=7

—1+4+3V3 —1++v6i —3++19
’ 14 7 14

243 —54+V3i —6+V6i —T+Ti
7 14 14 14

S8

Corollary 4.1. Let p = 5,7. The same is true for Ef ., fem € Mi(T5(p)) for
sufficiently large m.



Sketch of proof of Theorem 4.1.

We put
9= H flev € Ml!c(p+l)(F)>
€l (p)\I
g2
h:= m c M (F)
where fliy(2) i= (cz +d)~F f(£5) for v = (CCL Z) € SLy(R), and
1

Since the Fourier coefficients of h are rational, we have
h = P(j) for some P € Q[z]
where 5
=1 c M\(T
J=x €MD)
is the j-function.
Suppose that zy € H is algebraic with f(z9) = 0. Then

h(z0) = P(j(%)) = 0.

Hence j(2) is algebraic. By the Schneider’s theorem[10], z is imaginary quadratic.
Therefore, zy satisfies

azt +bx+c=0 (a,b,c€Z,a>0,ged(a,b,c)=1)
Put D := b* — 4ac and

VIPL (D=0 (mod 4))
1

21 = M (D = (mOd 4)) |

2

By the theory of complex multiplication, there exists ¢ € Gal(Q/Q(v/D)) such
that o(j(20)) = j(21). Therefore

P(j(20)) = 0 <= 0a(P(j(20))) = P(0(j(20))) = P(j(z1)) = h(z1) = 0
< fly(z1) = 0 for some v € To(p)\T.

By the assumption of the zeros on F*(p), the only possibility for D is the following.

D —4,—-11,-16,—19, —20 (p=2>5)
—3,-7,-12,-19, —24, -27,-28 (p=7)
Therefore, we can find exceptions stated in Theorem 4.1. O

9



Acknowledgments.

This work was supported by JSPS KAKENHI Grant Number JP19J20176

and the Research Institute for Mathematical Sciences, an International Joint Us-
age/Research Center located in Kyoto University.

References

1]

[6]

[10]

[11]

[12]

S. Choi, B. Im, On the zeros of certain weakly holomorphic modular forms for
[y (2), J. Number Theory. 166 (2016), 298-323.

S. Choi, C. Kim, Rational period functions and cycle integrals in higher level
cases, J. Math. Anal. Appl. 427(2) (2015), 741-758.

W. Duke, P. Jenkins, On the zeros and coefficients of certain weakly holomor-
phic modular forms, Paul Appl. Math. Q. 4(4) (2008), 1327-1340.

S. Gun, B. Saha, On the zeros of weakly holomorphic modular forms, Arch.
Math. (Basel) 102(6) (2014), 531-543.

S. Hanamoto, S. Kuga, Zeros of certain weakly holomorphic modular forms
for the Fricke group Ty (3), Acta Arith. 197(1) (2021), 37-54.

W. Kohnen, Transcendence of zeros of Fisenstein series and other modular
functions, Comment. Math. Univ. St. Pauli 52(1) (2003), 55-57.

S. Kuga, On the zeros of certain weakly holomorphic modular forms for T (5)
and T'§ (7), To appear in Acta Arith.

T. Miezaki, H. Nozaki, J. Shigezumi, On the zeros of Fisenstein series for
[§5(2) and T(3), J. Math. Soc. Japan. 59(3) (2007), 693-706.

F.K.C. Rankin, H.P.F. Swinnerton-Dyer, On the zeros of Fisenstein series for
SLy(7Z), Bull. Lond. Math. Soc. 2 (1970), 169-170.

T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math.
Ann. 113(1) (1937), 1-13.

J.-P. Serre, A Course in Arithmetic, Graduate texts in Mathematics, Springer-
Verlag, New York-Heidelberg, 1973. (Translation of Cours d’arithmétique
(French), Presses Univ. France, Paris, 1970.)

J. Shigezumi, On the zeros of the Eisenstein series for I'y(5) and T'(7),
Kyushu J. Math. 61 (2007), 527-549.

10



