On the locations and transcendency of the zeros of weakly holomorphic modular forms.

Seiji Kuga

Kyushu University

1 Introduction

Let $k \geq 4$ be an even integer, $\mathbb{H} = \{z \in \mathbb{C} \mid \text{Im}(z) > 0\}$ be the complex upper half plane and $\Gamma = SL_2(\mathbb{Z})$. The standard fundamental domain for Γ is given as follows.

$$\mathbb{F}(1) = \left\{ z \in \mathbb{H} \mid |z| \ge 1, -\frac{1}{2} \le \operatorname{Re}(z) \le 0 \right\}$$
$$\cup \left\{ z \in \mathbb{H} \mid |z| > 1, \ 0 < \operatorname{Re}(z) < \frac{1}{2} \right\}.$$

The Eisenstein series of weight k for Γ is a function on \mathbb{H} defined by

$$E_k(z) = \frac{1}{2} \sum_{\substack{c,d \in \mathbb{Z} \\ (c,d)=1}} (cz+d)^{-k} = 1 - \frac{2k}{B_k} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^n$$
 (1)

where $q = e^{2\pi i z}$, B_k is the kth Bernoulli number, and $\sigma_{k-1}(n) = \sum_{d|n} d^{k-1}$. Then E_k is a modular form of weight k for Γ

In 1970, Rankin and Swinnerton-Dyer proved that all of the zeros of E_k on \mathbb{F}_1 lie on the lower boundary arc[9]. Since then, the locations of the zeros of several types of holomorphic (or weakly holomorphic) modular forms have been studied by using the method introduced in [9](It is frequently called the RSD method). The RSD method is very straightforward, but it yields nontrivial results.

In 2008, Duke and Jenkins studied weakly holomorphic modular forms for Γ and constructed an integral formula of standard basis and studied their zeros[3]. The integral formula allows us to investigate the zeros of certain weakly holomorphic

modular forms. Choi and Kim found a generalized integral formula for the Fricke groups of prime levels with genus zero[2].

In this paper, we introduce some results of the locations and transcendency of zeros of certain weakly holomorphic modular forms for the Fricke groups.

2 Fundamental domain of $\Gamma_0^*(p)$ for p = 2, 3, 5, 7

Let p be a prime number, $\Gamma_0(p) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma \mid c \equiv 0 \pmod{p} \right\}$ be the congruence subgroup of level p. We set the Fricke group of level p by

$$\Gamma_0^*(p) = N_{SL_2(\mathbb{R})}(\Gamma_0(p)) = \Gamma_0(p) \cup \begin{pmatrix} 0 & \frac{-1}{\sqrt{p}} \\ \sqrt{p} & 0 \end{pmatrix} \Gamma_0(p).$$

For p = 2, 3, 5, 7, The standard fundamental domain of $\Gamma_0^*(p)$ denoted by $\mathbb{F}^*(p)$ are given as follows.

(i) When p = 2, 3,

$$\mathbb{F}^*(p) = \left\{ z \in \mathbb{H} \mid |z| \ge \frac{1}{\sqrt{p}}, -\frac{1}{2} \le \operatorname{Re}(z) \le 0 \right\}$$
$$\cup \left\{ z \in \mathbb{H} \mid |z| > \frac{1}{\sqrt{p}}, \ 0 < \operatorname{Re}(z) < \frac{1}{2} \right\}.$$

Figure 1: $\mathbb{F}^*(p)$ (p = 2, 3)

(ii) When p = 5, 7,

$$\mathbb{F}^*(p) = \left\{ z \in \mathbb{H} \ \middle| \ |z| \ge \frac{1}{\sqrt{p}}, \ \middle| z + \frac{1}{2} \middle| \ge \frac{1}{2\sqrt{p}}, \ -\frac{1}{2} \le \operatorname{Re}(z) \le 0 \right\}$$
$$\cup \left\{ z \in \mathbb{H} \ \middle| \ |z| > \frac{1}{\sqrt{p}}, \ \middle| z - \frac{1}{2} \middle| > \frac{1}{2\sqrt{p}}, \ 0 < \operatorname{Re}(z) < \frac{1}{2} \right\}.$$

Figure 2: $\mathbb{F}^*(p)$ (p = 5, 7)

Here, we put $\rho_2 = \frac{1}{2} + \frac{i}{2}$, $\rho_3 = -\frac{1}{2} + \frac{i}{2\sqrt{3}}$, $\rho_{5,1} = -\frac{1}{2} + \frac{i}{2\sqrt{5}}$, $\rho_{5,2} = -\frac{2}{5} + \frac{i}{5}$, $\rho_{7,1} = -\frac{1}{2} + \frac{i}{2\sqrt{7}}$, and $\rho_{7,2} = -\frac{5}{14} + \frac{\sqrt{3}}{14}i$.

3 The locations of the zeros

3.1 The Eisenstein series

The Eisenstein series of weight $k \geq 4$ for $\Gamma_0^*(p)$ is defined by

$$E_{p,k}^*(z) = \frac{1}{1 + p^{\frac{k}{2}}} (E_k(z) + p^{\frac{k}{2}} E_k(pz)).$$

At first, we briefly recall the RSD method introduced in [9]. The RSD method is based on considering the following function

$$F_k(\theta) = e^{\frac{ik\theta}{2}} E_k(e^{i\theta}), \ \theta \in (0, \pi)$$
 (2)

and the valence formula for Γ given by

$$v_{\infty}(f) + \frac{1}{2}v_{i}(f) + \frac{1}{3}v_{\frac{-1+\sqrt{3}i}{2}}(f) + \sum_{\substack{\rho \neq i, \frac{-1+\sqrt{3}i}{2} \\ \rho \in \Gamma \backslash \mathbb{H}}} v_{\rho}(f) = \frac{k}{12}$$

where f is a holomorphic modular form of weight k and $v_{\rho}(f)$ is the order of f at ρ . Rankin and Swinnerton-Dyer proved that F_k is real valued function. Picking out the four terms of the right hand side of (1) with $c^2 + d^2 = 1$, they showed that

$$\left| F_k(\theta) - 2\cos\frac{k\theta}{2} \right| < 2 \tag{3}$$

for all $\theta \in \left[\frac{\pi}{2}, \frac{2\pi}{3}\right]$. By using intermediate value theorem, the valence formula, and careful estimates of E_k at i and $\frac{-1+\sqrt{3}i}{2}$, we can obtain the distribution of the zeros of E_k on $\mathbb{F}^*(1)$.

Second, we shall applicate their method in the case of $\Gamma_0^*(p)$ for p=2,3,5,7. By applying the above method, Miezaki, Nozaki, and Shigezumi constructed the RSD method for p=2,3 and proved the following theorem.

Theorem 3.1. [8] Let p = 2, 3 and $k \ge 4$ be an even integer. Then all of the zeros of $E_{k,p}^*$ on $\mathbb{F}^*(p)$ lie on the lower boundary arc.

In [12], Shigezumi proved similar results for p = 5, 7 under some assumptions. His results are incomplete because they allowed infinitely many exceptions about k. Our first main result is giving the solution of this problem.

Theorem 3.2 (K). Let p = 5, 7 and $k \ge 4$ be an even integer. Then all of the zeros of $E_{k,p}^*$ on $\mathbb{F}^*(p)$ lie on the lower boundary arcs.

The following is a short proof of Theorem 3.2 for p = 5. Let A_5 be the lower boundary arcs of $\mathbb{F}^*(5)$. Then A_5 consists of two arcs of radiuses $\frac{1}{\sqrt{5}}$ and $\frac{1}{2\sqrt{5}}$ centered at 0 and $-\frac{1}{2}$ respectively(See Figure 2). More precisely

$$A_5^* = A_{5,1}^* \cup A_{5,2}^* \cup \left\{ \frac{i}{\sqrt{5}}, \rho_{5,1}, \rho_{5,2} \right\}$$

where

$$A_{5,1}^* = \left\{ \frac{1}{\sqrt{5}} e^{i\theta} \mid \frac{\pi}{2} < \theta < \frac{\pi}{2} + \alpha_5 \right\}$$
$$A_{5,2}^* = \left\{ -\frac{1}{2} + \frac{1}{2\sqrt{5}} e^{i\theta} \mid \alpha_5 < \theta < \frac{\pi}{2} \right\}$$

and α_5 is the angle such that $\tan \alpha_5 = 2$. As analogies of F_k , we define

$$F_{k,5,1}^{*}(\theta) = e^{\frac{ik\theta}{2}} E_{k,5}^{*} \left(\frac{1}{\sqrt{5}} e^{i\theta}\right), \ \theta \in \left[\frac{\pi}{2}, \frac{\pi}{2} + \alpha_{5}\right],$$
$$F_{k,5,2}^{*}(\theta) = e^{\frac{ik\theta}{2}} E_{k,5}^{*} \left(-\frac{1}{2} + \frac{1}{2\sqrt{5}} e^{i\theta}\right), \ \theta \in \left[\alpha_{5}, \frac{\pi}{2}\right]$$

Then we can write

$$F_{k,5,1}^{*}(\theta) = \frac{1}{2} \sum_{\substack{(c,d)=1\\5 \nmid c}} \left\{ \left(ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}} \right)^{-k} + \left(ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}} \right)^{-k} \right\}, \tag{4}$$

$$F_{k,5,2}^{*}(\theta) = \frac{1}{2} \sum_{\substack{(c,d)=1\\5 \nmid c,\ 2 \mid cd}} \left\{ \left(ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}} \right)^{-k} + \left(ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}} \right)^{-k} \right\}$$

$$+ \frac{2^{k}}{2} \sum_{\substack{(c,d)=1\\5 \nmid c,\ 2 \mid cd}} \left\{ \left(ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}} \right)^{-k} + \left(ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}} \right)^{-k} \right\}. \tag{5}$$

It is obvious that (4) and (5) are invariant under the complex conjugate, and hence $F_{k,5,j}^*$ (j=1,2) are real valued functions. Unfortunately, $F_{k,5,j}^*$ does not satisfy an inequality like (3) on whole interval. To resolve this problem, we consider the first few terms of (4) and (5). We define

$$\begin{split} f_{k,5,1}^*(\theta) &= \frac{1}{2} \sum_{\substack{(c,d) = \pm (1,0), \\ \pm (2,1)}} \left\{ (ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}})^{-k} + (ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}})^{-k} \right\} \\ &= 2\cos\frac{k\theta}{2} + (2e^{\frac{i\theta}{2}} + \sqrt{5}e^{-\frac{i\theta}{2}})^{-k} + (2e^{-\frac{i\theta}{2}} + \sqrt{5}e^{\frac{i\theta}{2}})^{-k}, \\ f_{k,5,2}^*(\theta) &= \frac{1}{2} \sum_{\substack{(c,d) = \pm (1,0)}} \left\{ (ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}})^{-k} + (ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}})^{-k} \right\} \\ &+ \frac{2^k}{2} \sum_{\substack{(c,d) = \pm (1,-1)}} \left\{ (ce^{\frac{i\theta}{2}} + \sqrt{5}de^{-\frac{i\theta}{2}})^{-k} + (ce^{-\frac{i\theta}{2}} + \sqrt{5}de^{\frac{i\theta}{2}})^{-k} \right\} \\ &= 2\cos\frac{k\theta}{2} + \left(\frac{e^{\frac{i\theta}{2}} - \sqrt{5}e^{-\frac{i\theta}{2}}}{2} \right)^{-k} + \left(\frac{e^{-\frac{i\theta}{2}} - \sqrt{5}e^{\frac{i\theta}{2}}}{2} \right)^{-k}, \end{split}$$

and

$$R_{k,5,j}^*(\theta) = F_{k,5,j}^*(\theta) - f_{k,5,j}^*(\theta).$$

Then $R_{k,5,j}^*$ contributes little to the behavior of $F_{k,5,j}^*$ by the following lemma.

Lemma 3.1. For $k \geq 4$, we have

$$|R_{k,5,1}^*(\theta)| \le 4\left(\frac{1}{2}\right)^{\frac{k}{2}} + \frac{160}{k-3}\left(\frac{1}{4}\right)^{\frac{k}{2}},$$

$$|R_{k,5,2}^*(\theta)| \le \frac{160}{k-3}\left(\frac{1}{4}\right)^{\frac{k}{2}} + 2\left(\frac{2}{3}\right)^{\frac{k}{2}} + 2\left(\frac{1}{2}\right)^{\frac{k}{2}} + \frac{260\sqrt{13}}{k-3}\left(\frac{4}{13}\right)^{\frac{k}{2}},$$

$$\left|(R_{k,5,1}^*)'\left(\frac{\pi}{2} + \alpha_5\right)\right| \le 6k\left(\frac{1}{2}\right)^{\frac{k}{2}} + \frac{720k}{k-3}\left(\frac{1}{4}\right)^{\frac{k}{2}},$$

$$\left|(R_{k,5,2}^*)'(\alpha_5)\right| \le \sqrt{2}k\left(\frac{1}{2}\right)^{\frac{k}{2}} + \frac{240k}{k-3}\left(\frac{1}{4}\right)^{\frac{k}{2}} + \frac{570\sqrt{19}k}{2(k-3)}\left(\frac{4}{19}\right)^{\frac{k}{2}},$$

By Lemma 3.1 and some careful estimates of $f_{k,5,j}^*$ around at the end points of interval, we can prove the following lemmas.

Lemma 3.2. Let $k \geq 40$ be an even integer. Then we have

(i)
$$|F_{k,5,1}^*(\theta) - 2\cos\frac{k\theta}{2}| < 1 \ (\theta \in [\frac{\pi}{2}, \frac{\pi}{2} + \alpha_5 - \frac{2\pi}{3k}]),$$

(ii)
$$|F_{k,5,2}^*(\theta) - 2\cos\frac{k\theta}{2}| < 1 \ (\theta \in [\alpha_5 + \frac{2\pi}{3k}, \frac{\pi}{2}]).$$

Lemma 3.3. Let $k \ge 40$ be an even integer.

(i) When $k \equiv 0 \pmod{4}$, we have

$$\operatorname{sgn}(F_{k,1}^*(\frac{\pi}{2} + \alpha_5)) = \operatorname{sgn}(f_{k,1}^*(\frac{\pi}{2} + \alpha_5)), \operatorname{sgn}(F_{k,2}^*(\alpha_5)) = \operatorname{sgn}(f_{k,2}^*(\alpha_5)).$$

(ii) When $k \equiv 2 \pmod{4}$, we have $F_{k,1}^*(\frac{\pi}{2} + \alpha_5) = F_{k,2}^*(\alpha_5) = 0$ and

$$\operatorname{sgn}((F_{k,1}^*)'(\frac{\pi}{2} + \alpha_5)) = \operatorname{sgn}((f_{k,1}^*)'(\frac{\pi}{2} + \alpha_5)), \operatorname{sgn}((F_{k,2}^*)'(\alpha_5)) = \operatorname{sgn}((f_{k,2}^*)'(\alpha_5)).$$

Lemmas 3.2, 3.3, and the intermediate value theorem tell us that $E_{k,5}^*$ has at least $\begin{cases} \left[\frac{k}{4}\right] & (k \equiv 0 \pmod{4}) \\ \left[\frac{k}{4}\right] - 1 & (k \equiv 2 \pmod{4}) \end{cases}$ distinct zeros on the arcs. Theorem 3.2 follows from the valence formula for $\Gamma_0^*(5)$ when $k \geq 40$.

Proposition 3.1. Let f be a holomorphic modular form for $\Gamma_0^*(5)$ of weight $k \geq 4$, which is not identically zero. We have

$$v_{\infty}(f) + \frac{1}{2}v_{\frac{i}{\sqrt{5}}}(f) + \frac{1}{2}v_{\rho_{5,1}}(f) + \frac{1}{2}v_{\rho_{5,2}}(f) + \sum_{\substack{\rho \neq \frac{i}{\sqrt{5}}, \rho_{5,1}, \rho_{5,2} \\ \rho \in \mathbb{F}^*(5)}} v_{\rho}(f) = \frac{k}{4}.$$

The proof of Proposition 3.1 is very similar to that of the valence formula for Γ (see [11]). When $4 \le k \le 38$, we can check directly that Theorem 3.2 is true in each case.

3.2 The natural basis

Let p = 1, 2, 3, 5, 7. A holomorphic function f on \mathbb{H} is a weakly holomorphic modular form of weight $k \in 2\mathbb{Z}$ for $\Gamma_0^*(p)$ if f satisfies

$$f\left(\frac{az+b}{cz+d}\right) = (cz+d)^k f(z) \text{ for any } z \in \mathbb{H}, \ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0^*(p).$$

· f has a q-expansion of the form $f(z) = \sum_{n \in \mathbb{Z}} a_f(n)q^n$

such that $a_f(n) = 0$ for almost all n < 0.

We denote the space of weakly holomorphic modular forms of weight k for $\Gamma_0^*(p)$ by $M_k^!(\Gamma_0^*(p))$.

Put
$$\delta = \begin{cases} 12 & \text{if } p = 1, 3, 7 \\ 8 & \text{if } p = 2 \\ 4 & \text{if } p = 5 \end{cases}$$
 and $m' = m_{p,k} = \frac{p+1}{24}\delta\ell_k + \dim S_{r_k}(\Gamma_0^+(p))$. Theorem

2.4 of [2] says that there exists a unique weakly holomorphic modular form $f_{k,m} \in M_k^!(\Gamma_0^+(p))$ such that

$$f_{k,m}(z) = q^{-m} + O(q^{m'+1})$$

for each integer $m \geq -m'$. Then $\{f_{k,m}\}_{m \geq -m'}$ forms a natural basis for $M_k!(\Gamma_0^*(p))$. We introduce some results of the locations of the zeros of $f_{k,m}$ without proofs.

Theorem 3.3. [3, Theorem 1] Let $\{f_{k,m}\}_{m\geq -m'}$ be the natural basis for $M_k^!(\Gamma)$. If $m\geq |\ell_k|-\ell_k$, then all of the zeros of $f_{k,m}$ in $\mathbb{F}^*(1)$ lie on the arc.

Theorem 3.4. [1, Theorem 1.2] Let $\{f_{k,m}\}_{m\geq -m'}$ be the natural basis for $M_k^!(\Gamma_0^*(2))$. If $m\geq 2|\ell_k|-\ell_k+8$, then all of the zeros of $f_{k,m}$ in $\mathbb{F}^*(2)$ lie on the arc.

Theorem 3.5. [5, Theorem 1.1] Let $\{f_{k,m}\}_{m\geq -m'}$ be the natural basis for $M_k^!(\Gamma_0^*(3))$. If $m\geq 18|\ell_k|+23$, then all of the zeros of $f_{k,m}$ in $\mathbb{F}^*(3)$ lie on the arc.

Theorem 3.6. [7] Let p = 5, 7 and $\{f_{k,m}\}_{m \geq -m'}$ be the natural basis for $M_k^!(\Gamma_0^*(p))$. If m is sufficiently large, then all of the zeros of $f_{k,m}$ in $\mathbb{F}^*(p)$ lie on the arcs.

4 The transcendency of the zeros

In [6], Kohnen proved that all of the zeros of E_k except for the points equivalent to i or $\frac{-1+\sqrt{3}i}{2}$ under the action of Γ are transcendental. The proof is based on the theory of complex multiplication and the result of [9]. Gun and Saha generalize his method and obtain many result about the transcendency of the zeros of modular forms for several groups[4]. For example, they proved similar results of [6] for the natural basis for $M_k^!(\Gamma)$, $E_{k,2}^*$, and $E_{k,3}^*$. The author considered the cases of $\Gamma_0^*(5)$ and $\Gamma_0^*(7)$. Our second result is the following.

Theorem 4.1. Let $p=5,7, k\in 2\mathbb{Z}, f=\sum_{n\geq n_f}a_nq^n\in M_k!(\Gamma_0^*(p))$ such that

- $a_n \in \mathbb{Q}$ for any n.
- All of the zeros of f on $\mathbb{F}^*(p)$ lie on the lower boundary arcs.

If $z_0 \in \mathbb{H}$ is a zero of f which is not equivalent to the following points, then z_0 is transcendental.

(i)
$$p = 5$$

$$\frac{i}{\sqrt{5}}$$
, $\frac{-1+\sqrt{19}i}{10}$, $\frac{-1+2i}{5}$, $\frac{-3+\sqrt{11}i}{10}$, $\frac{-2+i}{5}$, $\frac{-5+\sqrt{5}i}{10}$.

(ii)
$$p = 7$$

$$\frac{i}{\sqrt{7}}, \frac{-1+3\sqrt{3}i}{14}, \frac{-1+\sqrt{6}i}{7}, \frac{-3+\sqrt{19}i}{14}, \frac{-2+\sqrt{3}i}{7}, \frac{-5+\sqrt{3}i}{14}, \frac{-6+\sqrt{6}i}{14}, \frac{-7+\sqrt{7}i}{14}.$$

Corollary 4.1. Let p = 5, 7. The same is true for $E_{k,p}^*$, $f_{k,m} \in M_k^!(\Gamma_0^*(p))$ for sufficiently large m.

Sketch of proof of Theorem 4.1.

We put

$$g:=\prod_{\gamma\in\Gamma_0(p)\backslash\Gamma}f|_k\gamma\ \in M^!_{k(p+1)}(\Gamma),$$

$$g^{12}$$

$$h:=\frac{g^{12}}{\Delta^{k(p+1)}}\in M_0^!(\Gamma)$$

where $f|_k\gamma(z) := (cz+d)^{-k}f(\frac{az+b}{cz+d})$ for $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL_2(\mathbb{R})$, and

$$\Delta = \frac{1}{1728} (E_4^3 - E_6^2) \in S_{12}(\Gamma).$$

Since the Fourier coefficients of h are rational, we have

$$h = P(j)$$
 for some $P \in \mathbb{Q}[x]$

where

$$j = \frac{E_4^3}{\Lambda} \in M_0!(\Gamma)$$

is the j-function.

Suppose that $z_0 \in \mathbb{H}$ is algebraic with $f(z_0) = 0$. Then

$$h(z_0) = P(j(z_0)) = 0.$$

Hence $j(z_0)$ is algebraic. By the Schneider's theorem[10], z_0 is imaginary quadratic. Therefore, z_0 satisfies

$$az_0^2 + bz_0 + c = 0$$
 $(a, b, c \in \mathbb{Z}, a > 0, \gcd(a, b, c) = 1)$

Put $D := b^2 - 4ac$ and

$$z_1 := \begin{cases} \frac{i\sqrt{|D|}}{2} & (D \equiv 0 \pmod{4}) \\ \frac{-1+i\sqrt{|D|}}{2} & (D \equiv 1 \pmod{4}) \end{cases}.$$

By the theory of complex multiplication, there exists $\sigma \in \operatorname{Gal}(\overline{\mathbb{Q}}/\mathbb{Q}(\sqrt{D}))$ such that $\sigma(j(z_0)) = j(z_1)$. Therefore

$$P(j(z_0)) = 0 \iff \sigma(P(j(z_0))) = P(\sigma(j(z_0))) = P(j(z_1)) = h(z_1) = 0$$
$$\iff f|\gamma(z_1) = 0 \text{ for some } \gamma \in \Gamma_0(p) \backslash \Gamma.$$

By the assumption of the zeros on $\mathbb{F}^*(p)$, the only possibility for D is the following.

$$D = \begin{cases} -4, -11, -16, -19, -20 & (p = 5) \\ -3, -7, -12, -19, -24, -27, -28 & (p = 7) \end{cases}.$$

Therefore, we can find exceptions stated in Theorem 4.1.

Acknowledgments.

This work was supported by JSPS KAKENHI Grant Number JP19J20176 and the Research Institute for Mathematical Sciences, an International Joint Usage/Research Center located in Kyoto University.

References

- [1] S. Choi, B. Im, On the zeros of certain weakly holomorphic modular forms for $\Gamma_0^+(2)$, J. Number Theory. **166** (2016), 298–323.
- [2] S. Choi, C. Kim, Rational period functions and cycle integrals in higher level cases, J. Math. Anal. Appl. **427**(2) (2015), 741–758.
- [3] W. Duke, P. Jenkins, On the zeros and coefficients of certain weakly holomorphic modular forms, Paul Appl. Math. Q. 4(4) (2008), 1327–1340.
- [4] S. Gun, B. Saha, On the zeros of weakly holomorphic modular forms, Arch. Math. (Basel) **102**(6) (2014), 531–543.
- [5] S. Hanamoto, S. Kuga, Zeros of certain weakly holomorphic modular forms for the Fricke group $\Gamma_0^+(3)$, Acta Arith. **197**(1) (2021), 37–54.
- [6] W. Kohnen, Transcendence of zeros of Eisenstein series and other modular functions, Comment. Math. Univ. St. Pauli **52**(1) (2003), 55–57.
- [7] S. Kuga, On the zeros of certain weakly holomorphic modular forms for $\Gamma_0^+(5)$ and $\Gamma_0^+(7)$, To appear in Acta Arith.
- [8] T. Miezaki, H. Nozaki, J. Shigezumi, On the zeros of Eisenstein series for $\Gamma_0^*(2)$ and $\Gamma_0^*(3)$, J. Math. Soc. Japan. **59**(3) (2007), 693–706.
- [9] F.K.C. Rankin, H.P.F. Swinnerton-Dyer, On the zeros of Eisenstein series for $SL_2(\mathbb{Z})$, Bull. Lond. Math. Soc. 2 (1970), 169–170.
- [10] T. Schneider, Arithmetische Untersuchungen elliptischer Integrale, Math. Ann. 113(1) (1937), 1–13.
- [11] J.-P. Serre, A Course in Arithmetic, Graduate texts in Mathematics, Springer-Verlag, New York-Heidelberg, 1973. (Translation of Cours d'arithmétique (French), Presses Univ. France, Paris, 1970.)
- [12] J. Shigezumi, On the zeros of the Eisenstein series for $\Gamma_0^*(5)$ and $\Gamma_0^*(7)$, Kyushu J. Math. **61** (2007), 527–549.