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1 Introduction

Hecke-Mahler series is the generating function

o)

ho(2) = [kw]z*

k=1

of the sequence {[kw]}x>1, where w is a real number and [z] denotes the
largest integer not exceeding a real number z. Hecke [2] proved that, if w
is irrational, then h,(z) has the unit circle as its natural boundary, which
assures that h,(z) is transcendental over C(z). Mahler [3] proved that,
if w is quadratic irrational, then the value h,(«) is transcendental at
any nonzero algebraic number « inside the unit circle. Moreover, there
are several results on the algebraic independence of the values of the
Hecke-Mahler series including its derivatives in the case where w is a real
quadratic irrational number.

Theorem 1 (Nishioka [5], see also Nishioka [7]). Let w be a real quadratic
irrational number. If « is an algebraic number with 0 < |o| < 1, then

the infinite set {hg)(oz) | I > 0} is algebraically independent.

Theorem 2 (Masser [4]). Let w be a real quadratic irrational number.
Then the infinite set {h,(a) | o € Q, 0 < || < 1} s algebraically
independent.

The author proved the algebraic independence of the ‘direct product’
of the infinite sets treated in the above two results.



Theorem 3 (Tanuma [9]). Let w be a real quadratic irrational number.
Then the infinite set {h () |1 >0, a« € Q, 0 < |a| < 1} is algebraically
independent.

On the other hand, there are several results treating the values of the
Hecke-Mahler series for several quadratic irrational numbers. Nishioka
proved the algebraic independence of the values of the Hecke-Mahler se-
ries for several quadratic irrational numbers generating different quadratic
fields at a single algebraic number by establishing a criterion for the al-
gebraic independence of the values of Mahler functions under different
transformations.

Theorem 4 (Nishioka [6]). Let wi,...,w, be real quadratic irrational
numbers such that Q(w;) # Q( ) ( # j) If « is an algebraic number
with 0 < |a| < 1, then hy, (a), ..., hy,, (a) are algebraically independent.

Remark 1. As a matter of fact, Nishioka [6] obtained the algebraic
independence of the infinite set { f4(a), gd( ), ho(@) |d>2,1<j<r}

including the values of fu(z) = Y5, 2% and gd( ) =112, (1 — 2%).

The algebraic independence of the values of the Hecke-Mahler series
for several quadratic irrational numbers at a single algebraic number is
completely determined by Masser. We denote by {x} the fractional part
of a real number z.

Theorem 5 (Masser [4]). Let wy, ..., w, be real quadratic irrational num-
bers and v an algebraic number with 0 < |o| < 1. Then hy, (@), ..., h,, («)
are algebraically independent if and only if {£w;} are distinct.

Theorem 5 asserts that the algebraic relations among the values
he, (@), ..., hy, () are generated only by the linear relations among the
functions themselves of the forms

ho(2) +h_w(z) = —

e q() (1)

) = hioy(2) = 77 o € QL) @)

For the algebraic independence of their values at several algebraic
numbers, Adamczewski and Faverjon recently announced the following
result.

and

Theorem 6 (Adamczewski and Faverjon [1]). Let wy,...,w, be real
quadratic irrational numbers such that Q(w;) # Q(w;) (¢ # 7). Then
the infinite set {h,,(a) |1 <j<r, a€Q, 0< |a| <1} is algebraically
independent.



Theorem 6 is an application of their criterion for the algebraic inde-
pendence of the values of Mahler functions more general than that of
Nishioka. For proving Theorem 6, using their criterion, they reduced
the algebraic independence of the infinite set {h,,(a) |1 < j <71, a€
Q, 0 < |a| < 1} to that of each of the infinite sets {h,, () | o €
Q, 0 < |af <1} (1 <€ j < 7). Hence the algebraic independence
of {hy,(@) | 1 < j <r, a€Q 0< |af < 1} follows from Theo-
rem 2. On the other hand, Theorem 3 shows that each of the infinite
sets {hg]).(a) [1>0, a€Q, 0<|al <1} (1 <j<r)is algebraically in-
dependent. Therefore, using the criterion of Adamczewski and Faverjon
and Theorem 3, we can obtain the following generalization of Theorem 6.

Theorem 7. Let wy,...,w, be real quadratic irrational numbers such
that Q(w;) # Q(wy) (i # j). Then the infinite set {hg}(a) |1>0,1<
j<r, aeQ, 0<|a| <1} is algebraically independent.

In the case where wy, ..., w, generate the same quadratic field, some
algebraic relations occur. For example, we have

2ho,(a?) — (hy (@) + hy(—a)) =0

and B
h4w(042) — hgw(Oé) + hw(Oé) — hw+1/2(()é) € Q

In contrast with the case of the values at a single algebraic number,
the algebraic relations among the values of h,, (2),...,h,, (2) at several
algebraic numbers seems to be complicated. In the present article, we
study the algebraic independence of the values of hy, (2),...,h,.(2) in-
cluding their derivatives at several algebraic numbers in the case where

Qwi) =+ = Q(wy).

2 Main result: case of same quadratic field

Let wy,...,w, be real quadratic irrational numbers such that Q(w;) =
-+ = Q(w,). Then there exists a real quadratic irrational number w such
that Q(w) = Q(wy) = -+ = Q(w,) and

wi=pjw+gq (1<j<r),

where py, ..., p, are nonzero integers and ¢y, ..., ¢, are rational numbers.
By (1), we may assume that py, ..., p, are positive integers. If (p;, {¢:}) =
(pj, {q;}) for some i # j, then w; —w; = ¢; — ¢; € Z and so the values
h., () and h,, (a) are algebraically dependent by Theorem 5. Hence we



assume that the pairs (p1,{q1}), .., (pr, {¢-}) are distinct. Moreover, we
may assume that 0 < wq,...,w, <1 by (2).

First we consider the case where ¢ = --- = ¢, = 0. In this case, we
can obtain the following proposition from Theorem 3 by considering the
generating functions of subsequences of the sequence {[kw]}g>1.

Proposition 1. Letw be a real quadratic irrational number and aq, . . ., o,
algebraic numbers with 0 < |o;| <1 (1 <i<n). If aq,...,q, are pair-
wise multiplicatively independent, then the infinite set {hfig(al) | d >
1, 1 >0, 1 <i<n} is algebraically independent.

Proof. Let higp(z) = > peol(dk + t)w]z®T (d > 1, 1 < ¢ < d). Then
we have hy(z) = 30 hen(z). We note that hga)(z) = > peol(dk +

d)w]z® 4 = hg,(2?). Letting ¢; be the primitive d-th root of unity, we
see that

d d
12) = > han(C2) =D ([ hun(z) (0<j<d-1)
t=1 t=1

and so Cglhg)(ggz) = Zle(gd)]hggt (2) (1 >0, 0<j<d—1). Hence we
obtain
he(2)

hY
diag (17 Cclu L Cc(ld—l)l) ('de)

I
1 O | hgd),l)(Z)
B Cd & e 1 h(f}g)@)
A1 (r2vd-1 o
d (&) 1 gy (2)
for any d > 1. Let ay,...,q, be pairwise multiplicatively independent
algebraic numbers with 0 < |o;| < 1 (1 < i < n). Then the numbers
az,al/Q, azl/Q,..., Vd,Cdal/d,..., a-1 Zl/d (1 <i < n) are all distinct.
Hence by Theorem 3 the infinite set {hgfi)d)( 1/d) |d>1,1>0,1<:i<

n} is algebraically independent. Since hga)(z) = > pepl(dk+d)w]z% T4 =
haw(2%), we see that {hdw(a,) |d>1,1>0, 1<i<n} is algebraically

independent. O

Now we state the main result. Recall that w; = pjw +¢; (1 < j <
r), where w is a real quadratic irrational number, p,...,p, are pos-
itive integers, and qi,...,q. are rational numbers such that the pairs
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(p1,{a1}),- -, (pr,{q;}) are distinct. The main result treats the case
where ¢y, ..., q, are not necessarily zero.

Theorem 8. Let v, ..., a, be algebraic numbers with 0 < |oy| <1 (1 <
i < n) such that oy /oy is not a root of unity for any i # j. If (1—{q;})/p;
(1 <j <) are distinct, then {hﬁf}(a,) |l €Zsp, 1<i<n, 1<j<r}
15 algebraically independent.

As a corollary, we obtain the following generalization of Proposition 1.

Corollary 1. Let aq,...,a, be algebraic numbers with 0 < |oy| < 1. If
a;/aj is not a root of unity for any i # j, then the infinite set {hgi(ai) |
d>1,1>0, 1 <i<n} is algebraically independent.

In the rest of this article, we give a sketch of the proof of Theorem 8.

3 Construction of auxiliary functions

For any positive number w, let

o0 [klw

H,(z1,2) = Z Zzl zh2,

k1=1ko=1

Then H,(z,1) = h,(z). We have

H(21,20) + Hij(22,21) = Z PR Z PR

k1>1,ko>1 k1>1,ko>1
ko<kiw k1>kow
21 <2

_1—211—22
and

oo kia+[kiw]

a+w 21722 g g 21 22

k1=1 ko=1
[ee) akq klw]
k
= E P E 282 4 (228" E 252
k1=1 ko=1 ko=1
2129 z125T1

+ H, (2125, 22)
(4)

T -1 —2) (- z)(1— 228

for any positive integer a.



Let T' = ( ?1 ?2 > be a 2 x 2 matrix with nonnegative integer
21 122

entries and define

T(z1,22) = (A" 252, 27 257). ()

Let B = < (f é ) and C(a) = ( (1) il ) for any positive integer a.

Define b Z w = (bw + ¢)/(dw + €), where b, ¢,d, e are nonnegative

d

integers. Then we see that

Hp,(2z1,22) = —H,(B(z1,29)) (mod Q(z1, 22)) (6)

and that

Heayw(21, 22) = Ho(Cla) (21, 22))  (mod Q(z1, 22)) (7)

by (3) and (4), respectively, where B(z1, z5) and C(a)(z1, 22) are defined
by (5).

For simplicity, we assume that wy, ..., w, is expanded in purely peri-
odic continued fractions. Suppose that the positive quadratic irrational
w; is expanded in the continued fraction as follows:

w; = [0; agj),agj), s
where {a,(gj )}kzl is an purely periodic sequence of positive integers. Let
v; be its even period. Then we see that

w; = BC(a{)BC(a3) - -- BC(a¥) ).
Let . ; j
Using (6) and (7), we have

H, (21, 2) = H,,(Tj(21, 2)) (mod Q(z1, 22)). (8)

Combining Lemmas 3.3 and 7.3 of [4], we construct auxiliary func-
tions.

Lemma 1 (cf. Adamczewski and Faverjon [1]). Let wy,...,w, be real
quadratic irrational numbers such that Q(wy) = --- = Q(w,.). Let aq, ...,
ayp, be algebraic numbers with 0 < |oy| < 1 (1 < ¢ < n). Then there
exist multiplicatively independent algebraic numbers By, ..., By with 0 <
18| <1 (1 <j<m), roots of unity (1,...,¢,, a2 x 2 matriz T, and
power series Gj(z) = Gij(T1, Y1, T2, Y2, - - . s T, Ym) Such that
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(i) Gijla1,1,22,1, ..., 2, 1) = Ry, (GM;(x)) (mod Q(z)), where M;
s a monomial.

(11) Gij(ZQ) — hwj ((XZ) c @, where zZy — (ﬁla ]_,BQ, 1, c. 7677% 1)
(iii) Gij(2) = Gy(T(w1,51), T(22,92) - -, T(@m, ym)) (mod Q(2)).

Although we do not go into the detail, we remark that we can take the
same transformation matrix 7" for H,,, (1 < j <r). Since the maximum
eigenvalue p; of T; is a non-trivial unit of Q(w;), there exist positive
integers a;, b; such that py’ = p?-j. Let a = []; a; and TW = T¢. Then

the maximum eigenvalue p of T is pj @03/% - Since detT; = 1, we see

that 7™ is conjugate to T;»lbj /% This is the reason why we can take the
same transformation matrix 7". Hence we can apply Nishioka’s criterion.
We need the criterion of Adamczewski and Faverjon to treat the distinct
transformations simultaneously.

4 Linear independence of Hecke-Mahler se-
ries
By Nishioka’s criterion, it is sufficient to show that

oo [k1wj]
SN KNG 0< LV <L 1<i<n 1<j<r

k1=1 ko=1

is linearly independent over Q modulo @(2) for any L, where (1, ..., (, are
roots of unity and ¢; < --- < t,, are positive integers. On the contrary,

we assume that {Y2°_, Z,[f;:{] ERS(Gzt) | 0 < LI <L, 1 <4<
n, 1 < j < r} is linearly dependent over Q modulo Q(z). Then we see
that

{Z K [ke)" (Gi2")"

is linearly dependent over Q modulo Q(z). Therefore there exist algebraic
integers Ay, not all zero, such that

0<I<L 1<I<L+1, 1<i<n, 1§j§r}

r L L+1

Z Z Z Z it Z k kw] Cz tz = Z apz® € @(z)
k=0

i=1 j=1 =0 lI'=1



where

r L L+41 l kw. 14
=335 (_) {t_l G

tilk j=1 1=0 I'=1

Since {ag}r>o is a linear recurrence sequence of algebraic integers and

since ap = O(k**1), we see that the characteristic roots 51, .o &, are
roots of unity. Let N be a positive integer such that ¢ = = (N =
N =... =N =1 Puts=t,---t,N and s; = s/t;. Foranyk>0and

for any fixed nonnegative integer h, we have

r L L+1 I
Gupsn = Z Z Z Z A ! h/t <sk + h) {(Sk —;h)wj}

ti|h j=1 1=0 I'=1

r L L+1 h/t Sk’+h
=20 >
ti|h j=1 1=0 I'=1
y ((sk’—l—h)wj - {(sk+h)wj})l’
t; t;

We may assume that A\ (1 < j<r0<[I<L1<!I<L+1)
are not all zero. We replace N with a positive integral multiple N’ of N
such that N'g; € Z (1 < j <r). Then we have

r L L+1

Ughit, = Z Z Z A G(sik + 1) ((s1k 4+ Dw; — {sipjkw + Wj})l,-

j=1 1=0 I'=1
For each 7, we have

L L+1

Z Z MG (sik + 1) ((s1k + Lw; — {sipjkw + w]})

=0 I'=1
=Qu,i({s1pjkw + W k% + - + Qo ({s1pjkw + w;}),

where Qg,;(X), ..., Qo (X) € Q[X] with Qq4,;(X) # 0. In addition, at
least one of Qq,;(X), ..., Qo;(X) is not constant for any j such that Ay
(0<I<L,1<!I'<L+1)arenot all zero. Hence

T

ek, = Y (Qayi({s1phw + wi DAY + -+ + Qo;({s1pjkw + w;}))

=1
=Qa({s1prkw + w1}, ..., {siphw + w, )k +
+ QO({SlplkW + wl}v R {Slprkw + WT})a



where Qu(X1,...,X,),...,Qu(X1,...,X,) € Q[Xy,...,X,] are not all
constant polynomials of the form

Qi(X1,..., X;) = Qu(X1) +--- + Qu(X,) (0<i<4d)
with Qq(X1,...,X,) # 0. On the other hand, for all sufficiently large k,

we can write
d
Asptt; = Cak® + -+ + co,

where ¢y, ..., co are algebraic numbers. Let ig be the largest integer such
that Q;,(X1,...,X,) is not constant. Here we need the following key
lemma.

Lemma 2. Let Q1(X),...,Q,(X) € C[X] be not all constant and let
Q(Xl, . ,Xr) = QI(XI) + - +Q7«(Xr) € C[Xl,. .. ,X,«]. Let A1y ..., 0Qp
be positive numbers and by, ..., b, real numbers with 0 < b; < 1 such that
the pairs (a;,b;) (1 < j < r) are distinct. If the numbers (1 — b;)/a;
(1 <j <r) are distinct, then

f<T> = Q({alT + bl}a SRR {CLTT + br})

1s not a constant function on R.

Since (1 — {q¢;})/p; are distinct, from Lemma 2, there exists a real
number 1y such that

Qio({plTO + ql}’ ceey {pTTO + qr}) 7é Cig-

Lemma 3 (Tanaka and Tanuma [8]). Let w be a positive irrational num-
ber and let sq,...,s, be positive integers. Then, for any real number T,
there exists an increasing sequence {k,},>o of positive integers such that

Vlggo ({Slkuw} PRI {STka}) = ({SlT} yrt {STT}) ’

where each component of the left-hand side approaches the corresponding
component of the right-hand side from the right.

From Lemma 3 there exists an increasing sequence {k, },>¢ of positive
integers such that

Ijli_{go({slplkuw}? T {Slprkuw}) = ({pl(TO - w>}7 R {pT(TO - w)}),

where each component of the left-hand side approaches the corresponding
component of the right-hand side. Then we see that

Vli_}rgo({slplk,,w +wi}, . {siprkow + W })

=({p1(ro—w)+pw+at,. ... {p(70—w) +pw+q})
=({piro+ @}y Apemo + @0 }).



If ig = d, then lim,_ o asp,1v, /K¢ = Qal({p170}, ..., {pr70}) # c4. On
the other hand limy o Ggpis, / k? = ¢4, which is a contradiction. Hence
we see that the polynomial Q4(X7,...,X,) is equal to the constant ¢,
identically. Then, since

. ag —C le/l
lim —kth T Qa-1({m7o},- - {pr70})

V—00 ]{jg_l

and .
. Qghyt, — Cak
lim T a1

k—oo ]{j -

we see that ig < d—1. Continuing this process, we obtain a contradiction.

= C4-1,

5 Remarks on Lemma 2

In the previous work, the author proved the following lemma, which plays
a crucial role in the proof of Theorem 3 and is the b; = --- = b, = 0 case
of Lemma 2.

Lemma 4 (Tanuma [9]). Let Q1(X),...,Q.(X) € C[X] be not all con-
stant and let Q(Xy,...,X,) = Q1(Xq) + - + Q- (X;) € C[Xy,..., X,].
Let aq,...,a, are real numbers with a; > ay > -+ > a, > 0. Then

f(r) = Q{ar}, ... {a,7})
1s not a constant function on R.

The number (1 — b;)/a; in Lemma 2 is the smallest positive point
of discontinuity of the function {a;7 + b;}. The proof of Lemma 2 fo-
cuses on the behavior of the functions Q1 ({a17+b1}),...,Q-({a,7+b,.})
around these points of discontinuity. In fact, if we can find the point
of discontinuity of the function {a;7 + b;} at which all other functions
{arm+ b1}, .. {a;m + b0} {aj a7+ b4}, ..., {a, 7 + b} are contin-
uous, then we can obtain the same conclusion as in Lemma 2. Hence
Lemma 2 is obvious if the ratio of any pair of ay,...,a, is irrational.
However, in the proof of Theorem 8, we have to treat the case where
ai,...,a, are all integers. In this case, if we omit the assumption that
the numbers (1 — b;)/a; (1 < j < r) are distinct, the same conclusion
does not hold:

(21} — {} {T+ %} _ —%.

The assumption that any cross terms do not appear is also essential.
For example, let us consider the case where r = 2, a1 = 2, a = 1, and
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9 X
Figure 1: Line segments where the point ({27}, {7}) varies

by = by = 0. The point ({27}, {7}) varies on the two line segments shown
in Figure 1. Then, for the polynomial Q(X;, X5) = (X7 — 2X5)(X; —
2Xo+1) = X7 —4X1 Xo +4X3 + X5 — 2X,, we have Q({27},{7}) =0
for any 7.
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