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This paper is a brief survey on a uniformly locally o-minimal structure of
the second kind for non-specialists of model theory. An o-minimal structure
enjoys tame topological properties such as monotonicity theorem and defin-
able cell decomposition theorem. A uniformly locally o-minimal structure of
the second kind is a new variant of o-minimal structure. A uniformly locally
o-minimal structure of the second kind enjoys the local versions of tame topo-
logical properties possessed by an o-minimal structure. It enables to develop

a tame dimension theory for definable sets.

1 Introduction

This paper is a survey on a uniformly locally o-minimal structure of the second kind
for non-specialists of model theory. The definition of a structure given here is slightly
different from the original definition in model theory. A reader who has interest in
model theory should consult textbooks such as [1, 17, 19].

The notation N denotes the set of positive integers. In this paper, a structure is
a pair M = (M,6 = {6, },en) of a set M and the collection & of families &,, of

subsets of M™ satisfying the following conditions:

(i) The empty set and M™ are members of &,, for all n € N. The set {(z,y) €

T737-8512 JABIRAMALENT 5-1



M? | z =y} is also a member of Gs.

(ii) The families G,, are closed under the boolean algebra for all n € N.

(iii) The Cartesian product S; x S belongs to &,,,4,, if S1 and Sy are members of
S,, and G,,, respectively.

(iv) Let m: M™ — M™ be a coordinate projection and let X be a member of &,,.
Then, the projection image m(X) belongs to &,,.

(v) Let o be a permutation of {1,...,n}. We define the map & : M" — M" by
o(x1,. ., Tn) = (To(1),- -+ To(n)). We have 7(X) € &, if X € &,,.

When a structure M is given, the set M is called the universe or the underlying set of
the structure M. Members in G,, are called definable sets. Let X and Y be definable
sets. A map f: X — Y is called definable if its graph is a definable set.

We sometimes need to consider the family of structures such that some sets other
than those given in (i) are definable. When M is a densely linearly ordered set with
the order <, a structure M = (M, &) is called an expansion of a dense linear order if
the set {(z,y) | ¢ < y} is definable. When (M, -) is a group, a structure M with the
universe M is called an exzpansion of a group if the set {(z,y,2) € M3 |z -y =z} is
definable. We define an expansion of an ordered group, an expansion of an ordered
field and so on in the same manner.

An o-minimal structure M = (M, &) is an expansion of a dense linear order without

endpoints such that
(vi) any definable subset of M is a finite union of points and open intervals.

An open interval is a subset of M of the form {x € M | a < x < b}, where a €
M U{—oc0} and b € M U {+0o0}. Definable sets and definable maps in an o-minimal
structures are well-behaved. For instance, for a unary definable function f : M — M,
the domain of definition M is decomposed into finite points and open intervals such
that the restriction of f to the open intervals are monotone and continuous. It is called
the monotonicity theorem. The definable cell decomposition theorem for o-minimal
structures guarantees that any definable set is a finite union of good-shaped definable
sets called ‘cells.” Readers who are interested in o-minimal structures should consult
van den Dries’s book [4] and Coste’s book [2]. The paper [5] is also recommended.

Many structures relaxing the condition (vi) are proposed and investigated such



as weakly o-minimal structures [16], locally o-minimal structures [21] and structures
having (locally) o-minimal open cores [3, 6]. A locally o-minimal structure is defined
by localizing the condition (vi). A locally o-minimal structure is an expansion of a

dense linear order without endpoints satisfying the following condition:

(vi)” Let X be a definable subset of M. For any = € M, there exists an open interval
I containing the point x such that X N[ is a finite union of points and open

intervals.

Unfortunately, even a localized version of monotonicity theorem is unavailable in a
general local o-minimal structure [21, Proposition 2.11]. This is the reason why the
author proposed a uniformly locally o-minimal structure of the second kind in [8]. A
local monotonicity theorem holds true in a uniformly locally o-minimal structure of
the second kind [8, Corollary 3.1]. A definably complete locally o-minimal structure
admits local definable cell decomposition if and only if it is a uniformly locally o-
minimal structure of the second kind [8, Corollary 4.1]. This paper summarizes the
results on uniformly locally o-minimal structures of the second kind including the
above theorems. It is a survey paper, and does not give a new insight on uniformly
locally o-minimal structures of the second kind.

This paper is organized as follows. We first define a uniformly locally o-minimal
structure of the second kind and related structures in Section 2. Topology of definable
sets in a uniformly locally o-minimal structure of the second kind is discussed in
Section 3. We develop a dimension theory for definable sets in a uniformly locally
o-minimal structure of the second kind in Section 4 using the results of Section 3. We

conclude this paper with remarks in Section 5.

2 Baisc Definitions
We first review the definitions given in [18, 21, 15, 8].

Definition 2.1. We consider an expansion M = (M,&) of a dense linear order
without endpoints. It is definably complete if every definable subset of M has both a
supremum and an infimum in M U {£o0} [18]. A definably complete expansion of an

ordered group is divisible and abelian [18, Proposition 2.2].



We review the definition of locally o-minimal structures. The structure M is locally
o-minimal if, for every definable subset X of M and for every point a € M, there
exists an open interval I containing the point a such that X NI is a finite union
of points and open intervals. A locally o-minimal structure M is strongly locally o-
manimal if, for every point a € M, there exists an open interval I containing the point
a such that X NI is a finite union of points and open intervals for every definable
subset X of M.

A locally o-minimal structure M is a uniformly locally o-minimal structure of the
first kind if, for any positive integer n, any definable set X C M™*! and a € M, there
exists an open interval I containing the point a such that the definable sets X, NI
are finite unions of points and open intervals for all y € M™. Here, X, denotes the
fiber {z € M | (z,y) € X}. A uniformly locally o-minimal structure of the first kind
is called a uniformly locally o-minimal structure in [15].

A locally o-minimal structure M is a uniformly locally o-minimal structure of the
second kind if, for any positive integer n, any definable set X ¢ M"*!, a € M and
b € M™, there exist an open interval I containing the point a and an open box B
containing b such that the definable sets X, N I are finite unions of points and open
intervals for all y € B.

We frequently consider a definably complete uniformly locally o-minimal expansion
of the second kind of an ordered group. We simply call it a DCULOAS structure in
this paper.

A locally o-minimal structure whose universe is the set of reals R is strongly locally
o-minimal [21, Corollary 3.4]. A strongly locally o-minimal structure is always a
uniformly locally o-minimal structure of the first kind. But the converse is not true
in general. A definably complete uniformly locally o-minimal structure of the first
kind which is not strongly o-minimal is found in [8, Example 2.4]. A uniformly locally
o-minimal structure of the first kind is a uniformly locally o-minimal structure of the
second kind. The converse is not true, neither. A counterexample is [8, Example
2.3]. A locally o-minimal structure is not necessarily a uniformly locally o-minimal
structure of the second kind. Its counterexample is [8, Example 2.2].

The following proposition indicates that it is futile to consider a uniformly locally

o-minimal expansion of the second kind of an ordered field.



Proposition 2.2 ([8, Proposition 2.1]). A uniformly locally o-minimal expansion of

the second kind of an ordered field is o-minimal.

3 Tame topology

The following is the local monotonicity theorem for uniformly locally o-minimal

structure of the second kind.

Theorem 3.1 (Local monotonicity theorem). Consider a uniformly locally o-minimal
structure of the second kind M = (M,&). Let I be an interval and f : I — M be a
definable function. For any (a,b) € M?, there exist an open interval Jy containing the
point a, an open interval Jo containing the point b and a mutually disjoint definable

partition
F ) NI = XgUX . UX UX_

satisfying the following conditions:

(1) the definable set X4 is discrete and closed;

(2) the definable set X. is open and f is locally constant on X,;

(3) the definable set X is open and f is locally strictly increasing and continuous
on X4 ;

(4) the definable set X _ is open and f is locally strictly decreasing and continuous
on X_.

Furthermore, if the structure M is a DCULOAS structure, we can choose J; = I and
Jo=M.

This theorem is first proved in [15, Proposition 11] only for strongly locally o-
minimal structures. For any point a € M™, there exists an open box B such that the
intersection of B with a definable subset of M™ in the given strongly locally o-minimal
structure is a definable subset in an o-minimal structure having the same universe [15,
Theorem 9]. The above theorem for strongly locally o-minimal structures is a direct
corollary of it and the monotonicity theorem for o-minmal structures. Theorem 3.1 is
found in [8, Corollary 3.1] and its proof is not so easy. The ‘furthermore’ part follows
from [10, Theorem 2.11, Proposition 2.13].



We review the definitions of cells and definable cell decomposition.

Definition 3.2 (Definable cell decomposition). Consider an expansion of dense linear
order M = (M,8). Let (i1,...,i,) be a sequence of zeros and ones of length n.

(i1,...,1n)-cells are definable subsets of M™ defined inductively as follows:

e A (0)-cell is a point in M and a (1)-cell is an open interval in M.

e An (i1,...,0,,0)-cell is the graph of a continuous definable function defined on
an (i1,...,i,)-cell. An (i1,..., iy, 1)-cell is a definable set of the form {(z,y) €
Cx M| f(x) <y < g(x)}, where C is an (iy,...,i,)-cell and f and g are

definable continuous functions defined on C' with f < g.

A cell is an (iy,...,1iy,)-cell for some sequence (i, ...,i,) of zeros and ones. An open
cell isa (1,1,...,1)-cell.

We inductively define a definable cell decomposition of an open box B C M". For
n = 1, a definable cell decomposition of B is a partition B = |J/*, C; into finite
cells. For n > 1, a definable cell decomposition of B is a partition B = |J;, C;
into finite cells such that 7(B) = |J;, 7(C;) is also a definable cell decomposition of
7(B), where  : M™ — M™ ! is the projection forgetting the last coordinate. Given
a finite family {A)}ea of definable subsets of B, a definable cell decomposition of B
partitioning {Ax}aea is a definable cell decomposition of B such that the definable

sets A, are unions of cells for all A € A.

In an o-minimal structure, global definable cell decomposition is available. It means
that, for any finite family of definable subsets of M™, there exists a definable cell de-
composition of M"™ partitioning the given family [4, Chapter 3, Cell decomposition
theorem 2.11]. In a general local o-minimal structure, even local definable cell de-
composition is unavailable. The following theorem says that it is available when the
structure is a definablly complete uniformly locally o-minimal structure of the second
kind.

Theorem 3.3 (Local definable cell decomposition theorem). Consider a strongly
locally o-minimal structure or a definably complete uniformly locally o-minimal struc-
ture of the second kind M = (M, S).

Let {Ax}ren be a finite family of definable subsets of M™. For any point a € M™,



there exist an open box B containing the point a and a definable cell decomposition of
B partitioning the finite family {B N Ax | A € A and BN Ay # (}.

This theorem is first proved in [15, Proposition 13| only for strongly locally o-
minimal structures. It is also a direct corollary of [15, Theorem 9] and the definable
cell decomposition theorem for o-minimal structures. The case in which the structure
is a definably complete uniformly locally o-minimal structure of the second kind is [8,
Theorem 4.2].

Definition 3.4. A locally o-minimal structure admits local definable cell decomposi-

tion if the assertion in Theorem 3.3 hold true for all positive integers n.

When the structure is definably complete, we can get the following important corol-

lary:

Corollary 3.5 ([8, Corollary 4.1]). A definably complete locally o-minimal structure
admits local definable cell decomposition if and only if it is a uniformly locally o-

minimal structure of the second kind.

The local definable cell decomposition theorem (Theorem 3.3) cannot be extended
to the global one. We want to decompose a definable set into finite good-shaped
definable sets, which may not be as good-shaped as cells. One candidate is a quasi-

special submanifold defined as follows:

Definition 3.6 (Quasi-special submanifolds). Consider an expansion of a densely
linearly order without endpoints M = (M,8 = {&,,},en). Let X be a definable
subset of M"™ and 7 : M™ — M? be a coordinate projection. The definable set X
is a m-quasi-special submanifold or simply a quasi-special submanifold if, 7(X) is a
definable open set and, for every point x € 7(X), there exists an open box U in M¢
containing the point x satisfying the following condition: For any y € X N7 !(z),
there exist an open box V in M™ and a definable continuous map 7 : U — M" such
that 7(V) = U, 7(U) = X NV and the composition 7 o 7 is the identity map on U.

Let {X;}™, be a finite family of definable subsets of M™. A decomposition of M™
into quasi-special submanifolds partitioning {X;} is a finite family of quasi-special
submanifolds {C;}¥; such that



b UiV:1 Ci=M",

e C;NC; =0 when i # j and

e cither C; has an empty intersection with X; or is contained in X; for any
1<i<mand1<j < N.

A decomposition {C;}¥ | of M™ into quasi-special submanifolds satisfies the frontier
condition if the closure of any quasi-special submanifold C; is the union of a subfamily

of the decomposition.

The following theorem says that any definable set is a disjoint union of finite quasi-

special submanifolds.

Theorem 3.7 ([10, Theorem 4.5]). Consider a DCULOAS structure M = (M,S).
Let { X} be a finite family of definable subsets of M™. There exists a decomposition
{CYN.| of M™ into quasi-special submanifolds partitioning {X;}™, and satisfying the
frontier condition. Furthermore, the number N of quasi-special submanifolds in the

decomposition is not greater than the number uniquely determined only by m and n.

4 Dimension theory

Assuming that the considered structure admits local definable cell decomposition,
we can develop a good dimension theory. We first define the dimension of a definable

set as follows.

Definition 4.1 (Dimension of a definable set). Consider an expansion of dense linear
order M = (M,S = {S,,}nen). A definable set X C M™ is of dim(X) > m if there
exists an open box B C M™ and a definable continuous injective map f : B — X
which is homeomorphic onto its image. A definable set X C M™ is of dim(X) = m if
it is of dim(X) > m and it is not of dim(X) > m + 1. The empty set is defined to be

of dimension —oo.
The following corollary gives equivalent definitions of dimension.

Corollary 4.2 ([8, Corollary 5.3]). Consider a locally o-minimal structure M =
(M, 6 = {6, }nhen) which admits local definable cell decomposition. The following



conditions are equivalent for any definable subset X C M™:

o dim(X) > m;

e the definable set X contains an (iy,...,1i,)-cell with Z?:l i; > m, and

e there exist a coordinate projection w : M™ — M™ and a point a € M"™ such
that the definable set m(B N X) has a nonempty interior for any open boxr B

containing the point a.

The dimension defined above possesses the good features which we naturally expect

as in Theorem 4.3 and Theorem 4.5.

Theorem 4.3 ([8, Lemma 5.1, Corollary 5.4, Theorem 5.6]). Consider a locally
o-minimal structure M = (M, = {&,}nen) which admits local definable cell de-

composition. The following assertions hold true:

(1) Let X C Y be definable sets. Then, the inequality dim(X) < dim(Y") holds
true.

(2) Let o be a permutation of the set {1,...,n}. The definable map @ : M™ — M™
is defined by 7(x1,...,2n) = (To(1),---,Te(n)). Then, we have dim(X) =
dim(a (X)) for any definable subset X of M™.

(3) Let X and'Y be definable sets. We have dim(X x Y') = dim(X) + dim(Y).

(4) Let X and 'Y be definable subsets of M™. We have

dim(X UY) = max{dim(X),dim(Y")}.

(5) Let X be a definable set. The notation 0X denotes the frontier of X defined
by 0X = X \ X. We have dim(0X) < dim X.

In the course of the proof of Theorem 4.5, we demonstrate the following strong

definable Baire property, which is a definable variant of the famous Baire property.

Proposition 4.4 (Strong definable Baire property, [9, Theorem 4.3]). Consider a
DCULOAS structure M = (M,8 = {S&,}nen). Take ¢ € M. Let {X(r)},~c be a
parameterized increasing family of definable sets of M™; that is, there exists a definable
subset X of M™ ™1 such that X(r) coincides with the fiber X,. for any r > c¢ and we
have X(r) C X(s) if r < s. Set X = .. X(r). The definable set X(r) has a

nonempty interior for some r > c if X has a nonempty interior.
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Structures satisfying a weaker definable Baire property are discussed in [7, 14]

Theorem 4.5 ([9, Theorem 1.1, Corollary 1.2], [10, Theorem 3.14]). Consider a
DCULOAS structure M = (M, & = {&,, }nen). The following assertions hold true:

(1) Let f: X — M™ be a definable map. We have dim(f(X)) < dim X.

(2) Let f: X — M"™ be a definable map. The notation D(f) denotes the set of
points at which the map f is discontinuous. We have dimD(f) < dim X.

(3) (Addition Property) Let ¢ : X — Y be a definable surjective map whose fibers

are equi-dimensional; that is, the dimensions of the fibers ¢ 1(y) are constant.
We have dim X = dimY +dimp~!(y) for ally € Y.

5 Remarks

We conclude this paper with several remarks. The most restrictive structure con-
sidered in this paper is a DCULOAS structure. However, by [10], all the assertions
except the local definable cell decomposition theorem (Theorem 3.3) are satisfied in

any definably complete locally o-minimal structure such that

(x) the image of a discrete definable set under a coordinate projection is again

discrete.

A DCULOAS structure satisfies the condition (x). Shoutens proposed a locally
o-minimal structure called a model of DCTC [20]. A model of DCTC is a definably
complete locally o-minimal structure with the property (x). A locally o-minimal
expansion of an ordered field falls into a model of DCTC.

A natural unsolved question is as follows:

Conjecture. Does any definably complete locally o-minimal structure satisfy the prop-

erty (x)7

The strongly locally o-minimal structure in [15, Example 12] is definably complete
nor satisfies the property (x), neither.

Since a DCULOAS structure has tame topological properties, definable functions
are also expected to have tame properties. Definable equi-continuity is defined and

investigated in [11]. A variant of the Arzela-Ascoli theorem is demonstrated in the
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same paper.

Consider two structures M = (M, 6 = {S, },en) and M’ = (M, 8" = {&), },en)
having the same universe M. When & is a subset of &', M is called a reduct of
M’ and M’ is called an expansion of M. For a given structure M, the reduct
generated by the open sets definable in M is called the open core of M. A sufficient
condition for a structure having an o-minimal open core is discussed in [3]. Definably
complete expansions of ordered fields having locally o-minimal open cores are treated
in [6]. The author gave a sufficient condition for a structure having uniformly locally
o-minimal open core of the first/second kind in [12].

A locally o-minimal structure whose universe is the set of reals R is strongly o-

minimal. It enjoys more tame condition called almost o-minimality.

Definition 5.1. An expansion of densely linearly ordered set without endpoints is
almost o-minimal if any bounded definable set in M is a finite union of points and

open intervals. Here, M is the universe of the expansion.

The notion of almost o-minimality was formulated in [13].
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