On the nonexistence of the hierachy structure:
lower rationality = higher ruledness,

and very general hypersurfaces as examples
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Abstract

A short introduction to the author’s study of the rationality prblem, which centers the hierarchies of the
form: lower rationality = higher ruledness. Examples are given for the cases of very general hypersurfaces
and complete intersections, building upon the works of Totaro, Chatzistamatiou-Levine, and Schreieder.

1 Introduction

Rationality of algebraic varieties is an authentic important concept in algebraic geometry. In fact, its

mot primitive form is even taught in highschool mathematics:

birational ~ birational
{(z,y) |2? +y* =1} &= {(z,9) | 2* +y* =1} \ {(-1,0)} — At == P!

1-¢ 2 “ ot = (t:1)
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A relevant authentic important concept in algebraic geometry is ruledness. Actually, we can easily

interpolate these authentic concepts of algebraic geometry canonically, in the framework of
Lower rationality = Higher ruledness : (1)
Definition 1.1. For a projective n-dimensional variety X, and 0 < i < n, let us say:
X is (—i)-rational (lower rationality) or (n —i)-ruled (higher ruledness)
if there exist a i-dimensional Z* and a birational map

PrixZi— —>X.

*nori@nitech.ac.jp



Recently, I obtained a sufficient criterion (see [M19] for a survey) for the existence of the “uni-
”analogue of the above hierarchical strucutre, generalizing (actually based upon) the famous uniruledness
criterion of Mori, Miyaoka-Mori, Boucksom-Demailly-Paun-Peternell.

More recently, I have embarked upon a systematic study of the nonexistence results of such a hierar-
chical structures. Here, let us recall various (non-existence) results of rationality have been stated with

respect to the following hierachy:

rational — stable rational — ratract rational

(2)

== separably unirational == separably rationally connected

Then I shall look after nonexistence results of the hierachical structure analogaous to (1), applied to
various hierachies in (2).

Now there are two purposes of this paper. First, I shall state my first theorem Theorem 7?7, which
presents some practically applicable conclusions out of rectract lower-rationality conditions.

Second, I shall state retract lower irrationality theorems of very general hypersurfaces, upgrading the
theorems of Totaro [T16], Chatzistamatiou-Levine [?] and Schreieder [S19].

I hope this would give a good flabour of hierachical phenomena.

2 Definitions of the hierachies of hierachies

So, we wish to find necessary conditions for the existence of the following hierachical structures, whose

definitions are very natural in view of (1) and (2):

Definition 2.1. For a projective n-dimensional variety X, let us say:

(i) X is stable (—i)-rational or stable (n — i)-ruled (0<i<n)

if there exist an i-dimensional variety Z*. j € Z>o and a birational map

PIxP"ix 7 — —>P/ x X.

(ii) X is retract (—i)-rational or retract (n — i)-ruled (0<i<n)

if there exist an i-dimensional variety Z'. N € Zs, and rational maps
[ X——>PVN"ixZ ¢g:PVNTixzZio_—>X

such that the composition
gof: X——>X
1s defined, yielding an identity on a dense open subset of X.

(iii) X is separably (—i)-unirational or separably (n — i)-ruled (0 <i<n)

if there exist an i-dimensional variety Z'. N € Z>y and a separably dominant rational map

g:PN"ixZl > X



(iv) when X is further smooth,

X is separably (—i)-rationally connected (0<i<n)

if there exist a morphism f : P! — X such that

[Tx =2 @i<j<n O(aj),
with ay > -+ > ap—y > max(l,ap—i—1) > Ap_j—1 ="+ >0ap_1 > anp > 0.

(v) when X is further smooth,

X is (—i)-rationally connected (0<i<n)

if, for the mazimal rationally chain connected fibration 7 : X™ — — > Z [C92][KMM92] V),

dim Z < i.

3 Some necessary criteria for the existence of hierarchical struc-

tures

My first main theorem states the hierarchy of retratc rationality imposes restrictions on the P!-
invariant Nisnevich sheaves with transfers (actually, those P'-rigid presheaves with transfers separated

with respect to Zariski topology suffice), which we now recall:

Definition 3.1. (i) [VSF00] [MVWO06, Definition 1.1, Definition 1.5] Let Corp be the category whose
objects are the smooth separated schemes of finite type over F, and whose morphism from X to Y 1is

an elementary correspondence from X to Y, i.e. an irreducible closed subset W of X x Y whose

associated integral subscheme is finite and surjective over X.

(ii) [VSF00] [MVWO06, Definition 2.1] A presheaf with transfers is a contravariant additive functor
F: Corp — Ab. We will write PreSh (Corg), or PST(F) or even simply PST, for the functor category
whose objects are presheaves with transfers and whose morphisms are natural transformations.

(iii) [KSY16, Theorem 8] [KOY21, Definition 3.1] G € PST is called P'-invariant, if the structure
morphism opr : P1 — Spec F induces an isomorphism G(U) = G(U x PY) for any smooth F-scheme U.

Denote by PI (resp. Ply;s) the full subcategory of PST consisting of all P'-invariant presheaves
(resp. Nisnevich sheaves) with transfers.
(iv) [KSY16, Definition 6.1.3] [KOY21, Definition 3.6] F € PST is called P'-rigid, if the two induced
maps

is, it F(U x PY) — F(U)

are equal for any U € Sm.
Denote by PRig (resp. PRigy,,) the full subcategory of PST consisting of all P'-rigid presheaves

(resp. Nisnevich sheaves) with transfers.

DWhile the results in [C92][KMM92] are stated only for the case characteristic zero, their constructions are equally valid
for the characteristic positive case as is presented in [?, IV, Theorem 5.2, Complement 5.2.1] (see also [?, p.128, Theorem
5.13]).



Proposition 3.2. [KSY16, Proposition 6.1.4] [KOY21, Lemma 3.7] If G € PST is Pl-invariant, then
it is PL-rigid. The converse holds if G is separated for Zariski topology.

Then we can easily deduce the following inclusing relations (c.f. [KOY21, Lemma 3.8.(3)]):
Corollary 3.3. HIy,;s C PlIy;s € PRigy,, € PST
Now, my first main theorem can be stated as follows:

Theorem 3.4. Let X be any retract (—i)-rational with Z* in Definition 2.1(ii) taken to be smooth
projective. Then, for any G € PRigy,,, G(X) is a direct summand of G(Z*).
When this conclusion holds, let us state X has G —dim < i for G € PRigy,,. O

Although I can not give a complete proof here, it is much simpler comparing with “non-hierarical”
predecessors [ABBvB21] [BRS20] [KOY21].

Basic idea of my proof of Theorem 3.4 is, as Merkurjev’s suggestion in [CTP16, Remarque 1.6], to
make use of motivic technique of Rost [KM13, Appendix RC] and [KS16]. More precisely, I work with
the category of rational correspondences Cor?at(F , A) of smooth projective F' varieties with coefficients
in a commutative ring A, studied by Rost [KM13, Appendix RC] and Kahn-Sujatha [KS16] (see [KS16,
Proposition 2.3.4, Definition 2.3.5] for the definition of Cor®,(F,A)). Then the integral version of

following concept is a core in my proof of Theorem 3.4:

Definition 3.5. For a smooth projective F-variety X, we say X is
integrally (resp. rationally ) of birational dimension < i, if for some smooth projective F-variety
Z of dimension < i, [X] is a direct summand of [Z] in CorS,(F,Z) (resp. CorQ,(F,Q)).

rat

In fact, the rational version of this concept can be used to dereive practicable applicable conclusions

out of the lower rationally conncectedness, defined in Definition 2.1(v):

Theorem 3.6. Suppose char F = 0 and let X be any (—i)-rational connected smooth projective F variety.
Then, there exists a smooth projective Z® of dimension i, such that, for any G € PRigy,,, G(X) ® Q is
a direct summand of G(Z%) @ Q.

When this conclusion holds, let us state X has Gg — dim < i for G € PRigy,,. O

Actually, Theorem 3.4 and Theorem 3.6 are parts of the following bird’s-eye diagram of implications
of various hierarchies for a smooth projective F-variety X to satisfy (Here, I have only considered the

stronger versions of the conditions in Definition ?? with Z% (or Z) smooth projective.):



(—1)-rational stable (—i)-rational

P—

retract (—i)-rational ——————— separably (—i)-unirational —— separably (—i)-rationally connected

< if charF = 0 /< if charF = 0
av) (—¢)-unirational ——————— (—i)-rationally connected
integrally of birational dimension < 4 rationally of birational dimension < 4
if F=F
G —dim < i, VG € PRigy;, Gg — dim < i, VG € PRig ;.
if F _F‘/ if F=F
=0 (j >1) H° (X, %) =0 (j > 1), char F =0.

4 Hierachical versions of the theorems of Totaro, Chatzistamatiou-

Levine, Schreieder
Theorems of Totaro [T16], Chatzistamatiou-Levine [CL17] and Schreieder [?] [?] for very general

hypersurfaces (Totaro, Schreieder) and very general complete intersections (Chatzistamatiou-Levine) can

be upgraded to statements of non retract lower-rationality statements, as follows:

Theorem 4.1. [T16, Theorem 2.1] [CL17, Theorem 6.1]

A wvery general complete intersection Xg, ... 4, C ]P’g‘” of type (dy,...,d,) with the Fano condition
Y icicr di <n 41 is not stable 2-ruled. actually, not even retract —(n — 2)-rational, provided, for some
1<:<r,
n+r—+1 —21§j§rdj
di 2 2 3 JFi

Theorem 4.2. [?, Theorem 1.1] [S21, Theorem 7.1] For a natural number n, express it uniquely as
n=I0+r such that 2l71—2§7"§2l—2,

and set
Lon:=1=min{le N|[l+2'—2>n} (< [log,n]).
Then a very general hypersurface X4 C ]P’j;;rl defined over an uncountable field K is not retract
—(Lan — 1)-rational under the following conditions:
d>2+Lon if char K #2
d>3+4 Lan if char K =2



Unfortunately, my first main theorem Theorem 3.4 is not strong enough to prove these theorems.
This is because, proofs of Totaro, Chatzistamatiou-Levine, and Schreieder make use of the specialization
argument, which yield singular varieties. Actually, my proovs simply follow and upgrade the original
proofs of Chatzistamatiou-Levine, and Schreieder to hierarical versions. However, for the Schreieder’s
version: Theorem 4.2, I have recently found a more transparent proof, in the spirit of my proof of
Theorem 3.4.

The details will be put in ArXiv soon.
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