On unstable twisted rational cohomology groups of the automorphism groups of free groups 東京理科大学理学部第二部数学科 佐藤 隆夫* Satoh, Takao Department of Mathematics, Faculty of Science Division II, Tokyo University of Science #### Abstract In this article, we consider unstable twisted rational cohomology groups of the automorphism groups of free groups. First, we exposit that there are nontrivial unstable twisted 2-cocycles which are constructed by Kawazumi's cocycles. Second, we exposit a calculation of the second and the third cohomology groups of the automorphism group of free group of rank three with coefficients in the exterior products of the abelianization of the free group. Let F_n be a free group of rank $n \geq 2$ with basis x_1, \ldots, x_n , and Aut F_n the automorphism group of F_n . The study of the (co)homology groups of the automorphism groups of free groups has a long history. To the best of our knowledge, the first contribution goes back to a work of Nielsen [36] in 1924, who obtained the first finite presentation for Aut F_n and showed $H_1(\operatorname{Aut} F_n, \mathbf{Q}) = 0$ for $n \geq 2$. In 1984, by constructing the free group analogue of the Steinberg group, Gersten [22] showed $H_2(\operatorname{Aut} F_n, \mathbf{Q}) = 0$ for $n \geq 5$. In 1996, by introducing "non-abelian K-theory", Kiralis [24] showed $H_2(\operatorname{Aut} F_4, \mathbf{Q}) = 0$. In 1986, Culler-Vogtmann [8] introduced Outer spaces, and made a breakthrough in computation of (co)homology groups of the outer automorphism groups of free groups. To put it briefly, the Outer space \mathcal{K}_n is a finite dimensional contractible CW-complex on which the outer automorphism group Out F_n naturally acts properly discontinuously and cocompactly with finite cell stabilizers. The space \mathcal{K}_n is an analogue of the Teichmüller space on which the mapping class group of a surface naturally acts. It follows immediately from the structure of the Outer space that $H_i(\text{Aut } F_n, \mathbf{Q}) = 0$ for i > 2n - 2. Together with the development of computer technology, the Outer space enables one to compute unstable (co)homology groups. For example, Hatcher-Vogtmann [15] computed $H_4(\operatorname{Aut} F_4, \mathbf{Q}) = \mathbf{Q}$, and Vogtmann [47] showed $H_4(\text{Out } F_4, \mathbf{Q}) = \mathbf{Q}$. In their doctoral thesis, Gerlits [21] computed $H_7(\operatorname{Aut} F_5, \mathbf{Q}) = \mathbf{Q} \text{ in } 2002, \text{ and Ohashi [37] computed } H_8(\operatorname{Out} F_6, \mathbf{Q}) = \mathbf{Q} \text{ in } 2007$ respectively. By using sophisticated homotopy theory, Galatius [20] showed that the ^{*}e-address: takao@rs.tus.ac.jp stable integral homology groups of Aut F_n are isomorphic to those of the symmetric group \mathfrak{S}_n of degree n, in particular, $H_i(\text{Aut }F_n, \mathbf{Q}) = 0$ for $n \geq 2i + 1$. In an unstable range, the (co) homology groups of Aut F_n and Out F_n behaves in much complicated and mysterious way. The first systematic construction of unstable (co)homology classes was given by Morita [33] in 1999. He constructed a series of unstable homology classes $\mu_k \in H_{4k}(\text{Out } F_{2k+2}, \mathbf{Q})$ for $k \geq 1$ by using Kontsevich's results [25] and [26]. (See also [34].) Today, these homology classes are called the Morita classes of the outer automorphism groups of free groups. It is known that the first and the second one are generators of $H_4(\text{Out } F_4, \mathbf{Q})$ and $H_8(\text{Out } F_6, \mathbf{Q})$ respectively. (See [34] and [7] respectively.) Furthermore, Morita-Sakasai-Suzuki [35] showed that show the integral Euler characteristic of Out F_{11} is -1202. Recently, Borinsky and Vogtmann [2] showed that the rational Euler characteristic of Out F_n is always negative. From these fact it seems that the unstable rational (co)homology groups of Out F_n are quite large and complicated. We should remark that in [6], Conant-Hatcher-Kassabov-Vogtmann gave a construction of many nontrivial unstable homology classes of Aut F_n and Out F_n , and studies the Morita classes. To our best knowledge, the origin of the study of twisted (co)homology groups of Aut F_n goes back to a work of Kawazumi [23]. Let H be the abelianization of F_n , and set $H^* := \operatorname{Hom}_{\mathbf{Z}}(H, \mathbf{Z})$. Inspired by Morita's previous works [30] and [32] for the mapping class groups of surfaces, he constructed a crossed homomorphism on Aut F_n being the unique extension of the first Johnson homomorphism, and studied the structure of it cup products. (For details, see below.) Especially, he obtained a series of non-trivial rational cohomology classes $\zeta_p(\tau_1^{\otimes p}) \in H^p(\operatorname{Aut} F_n, H^* \otimes_{\mathbf{Z}} H^{\otimes p+1})$. In our previous research, also inspired by Morita's works [30] and [32], we computed $H^1(\operatorname{Aut} F_n, H) = \mathbf{Z}$ for $n \geq 2$ in [40], and $H^1(\operatorname{Aut} F_n, H^* \otimes_{\mathbf{Z}} \wedge^2 H) = \mathbf{Z}^{\oplus 2}$ for $n \geq 6$ [42] by using a presentation of Aut F_n . Moreover we showed that the generators of these cohomology groups are given by Morita's cocycle and Kawazumi's cocycle. In a series of their works, Djament-Vespa [11], Vespa [46], and Djament [10] established a homological algebraic method to compute of stable twisted cohomology groups of Aut F_n with functor homology theory. On the other hand, around the same time, Randal-Williams [38] also established a method to compute stable twisted cohomology groups of Aut F_n by using topology and representation theory. For instance, from their independent works, we see $$H^k(\operatorname{Aut} F_n, \wedge^k H_{\mathbf{Q}}) = \mathbf{Q}^{\oplus p(k)}$$ for $n \geq 2k + 3$ where p(k) is the number of partitions of k, and the subscript \mathbf{Q} means tensoring with \mathbf{Q} over \mathbf{Z} . Moreover, it is known that a generating system of $H^k(\operatorname{Aut} F_n, \wedge^k H_{\mathbf{Q}})$ is constructed from Kawazumi's cohomology classes. (For details, see below.) The abelianization $F_n \to H$ induces the surjective homomorphism $\operatorname{Aut} F_n \to \operatorname{Aut} H$, Here we identify $\operatorname{Aut} H$ with $\operatorname{GL}(n, \mathbf{Z})$ by fixing the basis of H induced from x_1, \ldots, x_n . Let IA_n be the kernel of $\operatorname{Aut} F_n \to \operatorname{GL}(n, \mathbf{Z})$. The group IA_n is called the IA-automorphism group of F_n . By observing the Lyndon-Hochshild-Serre spectral sequence of the group extension $$1 \to \mathrm{IA}_n \to \mathrm{Aut}\, F_n \to \mathrm{GL}(n,\mathbf{Z}) \to 1$$ we see that the twisted (co)homology groups of Aut F_n is closely related to the untwisted (co)homology groups of IA_n . More precisely, for an Aut F_n -module M on which Aut F_n acts via $GL(n, \mathbf{Z})$, we have $$E_2^{p,q} = H^p(GL(n, \mathbf{Z}), H^q(IA_n, M)) \Longrightarrow H^{p+q}(Aut F_n, M).$$ In particular, the fact that $H^1(\operatorname{Aut} F_n, H^* \otimes_{\mathbf{Z}} \wedge^2 H) = \mathbf{Z}^{\oplus 2}$ comes from $$H^0(\mathrm{GL}(n,\mathbf{Z}),H^1(\mathrm{IA}_n,M))=(H^1(\mathrm{IA}_n,\mathbf{Z})\otimes_{\mathbf{Z}}M)^{\mathrm{GL}(n,\mathbf{Z})}.$$ Hence it is important to investigate the structure of $H^p(IA_n, \mathbf{Z})$ from a viewpoint of the study of twisted (co)homology groups of Aut F_n . Today, only the first integral homology group of IA_n is completely determined by independent works of Cohen-Pakianathan [4, 5], Farb [12] and Kawazumi [23]. It is isomorphic to the abelianization of IA_n , and is the free abelian group generated by the Magnus generators obtained by Magnus [28] in 1935. Krstić-McCool [27] showed that IA₃ is not finitely presentable. This shows that there is a possibility that the second homology group $H_2(IA_3, \mathbf{Z})$ is not finitely generated. In fact, this follows by a work of Bestvina-Bux-Margalit [1]. More precisely, by using Outer space, they showed that the quotient group of IA_n by the inner automorphism group Inn F_n has a 2n-4-dimensional Eilenberg-Maclane space, and that $H_{2n-4}(\mathrm{IA}_n/\mathrm{Inn}\,F_n,\mathbf{Z})$ is not finitely generated. For $n \geq 4$, it is not known whether IA_n is finitely presentable or not. Namely, at the present stage, even $H_2(IA_n, \mathbf{Z})$ is not determined explicitly. Pettet [39] determined the image of the rational cup product $\cup_{\mathbf{Q}} : \Lambda^2 H^1(\mathrm{IA}_n, \mathbf{Q}) \to H^2(\mathrm{IA}_n, \mathbf{Q})$, and gave its irreducible GL-decomposition for $n \geq 3$. Furthermore, Day-Putman [9] obtained an explicit finite set of generators for $H_2(IA_n, \mathbf{Z})$ as a $GL(n, \mathbf{Z})$ -module. In our previous paper [44], for n=3, we detected a non-trivial GL-irreducible component in $H^2(\mathrm{IA}_3, \mathbf{Q})/\mathrm{Im}(\cup_{\mathbf{Q}})$, and showed that the image of the triple cup product $\cup_{IA_3}^3: \Lambda^3 H^1(IA_3, \mathbf{Q}) \to H^3(IA_3, \mathbf{Q})$ is trivial In this article, we consider Kawazumi's cocycles. They are constructed from the extension of the first Johnson homomorphism of Aut F_n . Let $F_n = \Gamma_n(1) \supset \Gamma_n(2) \supset \cdots$ be the lower central series of F_n , and $\mathcal{L}_n(k) := \Gamma_n(k)/\Gamma_n(k+1)$ its k-th successive quotient. The graded sum $\bigoplus_{k\geq 1} \mathcal{L}_n(k)$ has the graded Lie algebra structure with the Lie bracket induced from the commutator bracket of F_n , and is isomorphic to the free Lie algebra generated by $\mathcal{L}_n(1) = H$ due to a classical work of Magnus. (See [29] for example.) The first Johnson homomorphism $$\tau_1: \mathrm{IA}_n \to H^* \otimes \wedge^2 H \hookrightarrow H^* \otimes H^{\otimes 2}$$ is defined by $$\tau_1(\sigma)(x \pmod{\Gamma_n(2)}) = x^{-1}x^{\sigma} \pmod{\Gamma_n(3)} \in \mathcal{L}_n(2) = \wedge^2 H$$ where the second equality is induced from the natural injection $\wedge^2 H \hookrightarrow H^{\otimes 2}$. Originally, in a series of his works [16, 17, 18, 19], the Johnson homomorphisms of the mapping class groups were introduced by Johnson who determined the abelianization of the Torelli group by using the first Johnson homomorphism. Today, the study of the Johnson homomorphisms of the mapping class group has achieved a good progress by many authors including Morita [31], Hain [13] and so on. For surveys for the Johnson homomorphisms, see [43] and [14] for example. Here we should remark that Kawazumi [23] showed that tau_1 extends to Aut F_n as a crossed homomorphism by using the magnus expansions of F_n . For any $k \geq 1$, let $\zeta_k : (H^* \otimes H^{\otimes 2})^{\otimes k} \to H^* \otimes H^{\otimes (k+1)}$ be the map defined by $$u_1 \otimes \cdots \otimes u_k \mapsto (u_1 \otimes \mathrm{id}^{\otimes (k-1)}) \circ (u_2 \otimes \mathrm{id}^{\otimes (k-2)}) \circ \cdots \circ u_k.$$ Namely, ζ_k is defined by taking the contractions recursively. By considering the cup product of the twisted 1-cocycle τ_1 of Aut F_n , Kawazumi [23] constructed twisted cocycles $\zeta_k \circ (\tau_1^{\otimes k}) \in H^k(\operatorname{Aut} F_n, H^* \otimes H^{\otimes (k+1)})$. In the present article, at first we show the following theorem. Theorem 1. For $n \geq 7$, $$H^2(\operatorname{Aut} F_n, \operatorname{Im}(\cup_{\mathbf{Q}})^*) \supset \mathbf{Q}^{\oplus d_n}$$ where d_n is the number of the GL-irreducible components of $\operatorname{Im}(\cup_{\mathbf{Q}})$. In particular, we show the above theorem by constructing linearly independent second cocycles by using Kawazumi's cocycle $\zeta_2 \circ (\tau_1^{\otimes 2})$. Next, for $k \geq 2$, we slightly improve the fact that $H^k(\operatorname{Aut} F_n, \wedge^k H_{\mathbf{Q}}) = \mathbf{Q}^{\oplus p(k)}$ for $n \geq 2k+3$, obtained by the independent works of Djament, Vespa and Randal-Williams as mentioned above. After taking the contraction with respect to the first and second component and the natural projection $H^{\otimes k} \to \wedge^k H$, we denote by $\mapsto h_k \in H^k(\operatorname{Aut} F_n, \wedge^k H)$ the image of $\zeta_k \circ (\tau_1^{\otimes k})$ by the induced map between the coefficients. For any partition $\lambda = (\lambda_1, \ldots, \lambda_m)$ of $k \geq 1$, set $$h_{\lambda} := h_{\lambda_1} \wedge h_{\lambda_2} \wedge \cdots \wedge h_{\lambda_m} \in H^k(\operatorname{Aut} F_n, \wedge^k H_{\mathbf{Q}}).$$ It is known that $\{h_{\lambda} \mid \lambda \vdash k\}$ generates $H^k(\operatorname{Aut} F_n, \wedge^k H_{\mathbf{Q}})$ for $n \geq 2k + 3$. Then we show the following theorem. **Theorem 2.** For $k \geq 2$ and $n \geq 2k$, the set $\{h_{\lambda} \mid \lambda \vdash k\}$ is linearly independent on $H^k(\mathrm{IA}_n, \wedge^k H_{\mathbf{Q}})$. Finally, we show an explicit calculation for the case of n=3 and k=2. In 1993, by using the Outer space, Brady [3] computed the integral cohomology groups of Out F_3 . By applying his method to the computation of twisted rational homology groups of Out F_3 , we obtain the following result. ## Theorem 3. $$H^{q}(\operatorname{Out} F_{3}, \wedge^{2} H_{\mathbf{Q}}) = \begin{cases} 0, & q \neq 2, \\ \mathbf{Q}, & q = 2, \end{cases}$$ $$H^{q}(\operatorname{Out} F_{3}, \wedge^{3} H_{\mathbf{Q}}) = 0, \quad q \geq 0.$$ Furthermore, by using the Lyndon-Hochshild-Serre spectral sequence of the group extension $$1 \to \operatorname{Inn} F_n \to \operatorname{Aut} F_n \to \operatorname{Out} F_n \to 1$$, and the fact that $$H^1(\operatorname{Out} F_3, (H^* \otimes \wedge^2 H)_{\mathbf{Q}}) = \mathbf{Q}, \quad H^2(\operatorname{Out} F_3, (H^* \otimes \wedge^3 H)_{\mathbf{Q}}) = \mathbf{Q},$$ we obtain the following. #### Theorem 4. $$H^2(\operatorname{Aut} F_3, \wedge^2 H_{\mathbf{Q}}) = \mathbf{Q}^2, \quad H^3(\operatorname{Aut} F_3, \wedge^3 H_{\mathbf{Q}}) = \mathbf{Q}.$$ We remark that for $n \geq 3$ the irreducible decomposition of $\operatorname{Im}(\cup_{\mathbf{Q}})^*$ as a GL-module is given by $$\operatorname{Im}(\cup_{\mathbf{Q}})^* = [1, 1] \oplus (D^{-1} \otimes [3, 2])$$ where D means the determinant representation, and $[\lambda]$ means the irreducible module correspond to a Young tableau λ . Namely, the multiplicity of $\wedge^2 H_{\mathbf{Q}}$ in $\mathrm{Im}(\cup_{\mathbf{Q}})^*$ is one. It shows that the equality in Theorem 1 does not hold in the unstable range in general. Roughly speaking, the reason why the dimension of $H^2(\mathrm{Aut}\,F_3, \wedge^2 H_{\mathbf{Q}})$ is different from the multiplicity of $\wedge^2 H_{\mathbf{Q}}$ in $\mathrm{Im}(\cup_{\mathbf{Q}})^*$ comes from the following fact. For a general $n \geq 3$, we have $H^2(\mathrm{Aut}\,F_n, \wedge^2 H_{\mathbf{Q}})$ is isomorphic to $H^2(\mathrm{IA}_n, \wedge^2 H_{\mathbf{Q}})^{\mathrm{GL}(n,\mathbf{Z})}$. The natural map $$(\operatorname{Im}(\cup_{\mathbf{Q}}) \otimes \wedge^2 H_{\mathbf{Q}})^{\operatorname{GL}(n,\mathbf{Z})} \to (H^2(\operatorname{IA}_n,\mathbf{Q}) \otimes \wedge^2 H_{\mathbf{Q}})^{\operatorname{GL}(n,\mathbf{Z})}$$ is surjective for $n \geq 6$ from our results, but not surjective for n = 3. We show this by using combinatorial group theory and representation theory. We also remark that this seems to imply that for n = 3, Kawazumi cocycles $h_{[2]}$ and $h_{[1,1]} \in H^2(\operatorname{Aut} F_3, \wedge^2 H_{\mathbf{Q}})$ are also linearly independent. This article is an announcement of our recent results. For the details of the proofs, see the forthcoming paper [45]. ### Acknowledgments The author would like to express his sincere gratitude to Professor Aurelien Djament and Professor Christine Vespa for valuable discussions about unstable (co)homology groups of the automorphism groups of free groups. The part of this work was done when the author stayed at the Mathematical Institute of the University of Bonn as a visitor in 2017. The author would like to thank the University of Bonn for its hospitality, Max Planck Institute for Mathematics for arranging his office, and Tokyo University of Science for giving him the chance to take a sabbatical. This work is supported by JSPS KAKENHI Grant Number 16K05155 and 19K03477. # References - [1] M. Bestvina, Kai-Uwe Bux and D. Margalit; Dimension of the Torelli group for $Out(F_n)$, Inventiones Mathematicae 170 (2007), no. 1, 1–32. - [2] M. Borinsky and K. Vogtmann; The Euler characteristic of Out F_n , Comment. Math. Helv. 95 (2020), 703–748. - [3] T. Brady; The integral cohomology of $\operatorname{Out}_+(F_3)$. J. Pure Appl. Algebra 87 (1993), 123–167. - [4] F. Cohen and J. Pakianathan; On Automorphism Groups of Free Groups, and Their Nilpotent Quotients, preprint. - [5] F. Cohen and J. Pakianathan; On subgroups of the automorphism group of a free group and associated graded Lie algebras, preprint. - [6] J. Conant, A. Hatcher, M. Kassabov and K. Vogtmann; Assembling homology classes in automorphism groups of free groups. Commentarii Mathematici Helvetici, 91 (2016), no. 4, 751–806. - [7] J. Conant and K. Vogtmann; Morita classes in the homology of automorphism groups of free groups. Geom. Topol. 8 (2004), 1471-1499. - [8] M. Culler and K. Vogtmann; Moduli of graphs and automorphisms of free groups, Invent. math., 84 (1986), 91–119. - [9] M. Day and A. Putman; On the second homology group of the Torelli subgroup of $Aut(F_n)$, Geom. Topol. 21 (2017), no. 5, 2851–2896. - [10] A. Djament; Decomposition de Hodge pour l'homologie stable des groupes d'automorphismes des groupes libres, Compos. Math. 155 (2019), no. 9, 1794–1844. - [11] A. Djament and C. Vespa; Sur l'homologie des groupes d'automorphismes des groupes libres a coefficients polynomiaux, Comment. Math. Helv. 90 (2015), no. 1, 33–58. - [12] B. Farb; Automorphisms of F_n which act trivially on homology, in preparation. - [13] R. Hain; Infinitesimal presentations of the Torelli group, Journal of the American Mathematical Society 10 (1997), 597-651. - [14] R. Hain; Johnson homomorphisms, EMS Surv. Math. Sci. 7 (2020), no. 1, 33–116. - [15] A. Hatcher and K. Vogtmann; Rational homology of $Aut(F_n)$, Math. Res. Lett. 5 (1998), 759–780. - [16] D. Johnson; An abelian quotient of the mapping class group, Mathematshe Annalen 249 (1980), 225–242. - [17] D. Johnson; The structure of the Torelli group I: A Finite Set of Generators for \mathcal{I} , Annals of Mathematics, 2nd Ser. 118, No. 3 (1983), 423–442. - [18] D. Johnson; The structure of the Torelli group II: A characterization of the group generated by twists on bounding curves, Topology, 24, No. 2 (1985), 113–126. - [19] D. Johnson; The structure of the Torelli group III: The abelianization of \mathcal{I} , Topology 24 (1985), 127–144. - [20] S. Galatius; Stable homology of automorphism groups of free groups, Ann. of Math. 173 (2011), 705-768. - [21] F. Gerlits; Invariants in chain complexes of graphs. Thesis (Ph.D.)—Cornell University, (2002). - [22] S. M. Gersten; A presentation for the special automorphism group of a free group, J. Pure and Applied Algebra 33 (1984), 269–279. - [23] N. Kawazumi; Cohomological aspects of Magnus expansions, preprint arXiv:math.GT/0505497. - [24] J. Kiralis; A non-abelian K-theory and pseudo-isotopies of 3-manifolds, K-theory 10 (1996), 135–174. - [25] M. Kontsevich; Formal (non)commutative symplectic geometry, The Gelfand Mathematical Seminars, 1990-1992, 173-187, Birkhäuser Boston, Boston, MA, 1993. - [26] M. Kontsevich; Feynman diagrams and low-dimensional topology, First European Congress of Mathematics, Vol. II (Paris, 1992), 97-121, Progress in Mathematics, 120, Birkhäuser, Basel, 1994. - [27] S. Krstić and J. McCool; The non-finite presentability in $IA(F_3)$ and $GL_2(\mathbf{Z}[t,t^{-1}])$, Invent. Math. 129 (1997), 595–606. - [28] W. Magnus; Über *n*-dimensinale Gittertransformationen, Acta Math. 64 (1935), 353–367. - [29] W. Magnus, A. Karras and D. Solitar; Combinatorial group theory, Interscience Publ., New York (1966). - [30] S. Morita; Families of Jacobian manifolds and characteristic classes of surface bundles I, Ann. Inst. Fourier 39 (1989), 777–810. - [31] S. Morita; Abelian quotients of subgroups of the mapping class group of surfaces, Duke Mathematical Journal 70 (1993), 699-726. - [32] S. Morita; The extension of Johnson's homomorphism from the Torelli group to the mapping class group, Invent. math. 111 (1993), 197-224. - [33] S. Morita; Structure of the mapping class groups of surfaces: a survey and a prospect, Geometry and Topology Monographs Vol. 2 (1999), 349-406. - [34] S. Morita; Cohomological structure of the mapping class group and beyond, Proc. of Symp. in Pure Math. 74 (2006), 329-354. - [35] S. Morita, T. Sakasai, M. Suzuki; Computations in formal symplectic geometry and characteristic classes of moduli spaces, Quantum Topol. 6 (2015), no. 1, 139–182. - [36] J. Nielsen; Die Isomorphismengruppe der freien Gruppen, Math. Ann. 91 (1924), 169-209. - [37] R. Ohashi; The rational homology group of $Out(F_n)$ for $n \le 6$. Experiment. Math. 17 (2008), no. 2, 167–179. - [38] O. Randal-Williams; Cohomology of automorphism groups of free groups with twisted coefficients. Selecta Math. (N.S.) 24 (2018), no. 2, 1453–1478. - [39] A. Pettet; The Johnson homomorphism and the second cohomology of IA_n , Algebraic and Geometric Topology 5 (2005) 725-740. - [40] T. Satoh; Twisted first homology group of the automorphism group of a free group, J. of Pure and Appl. Alg., 204 (2006), 334–348. - [41] T. Satoh; The cokernel of the Johnson homomorphisms of the automorphism group of a free metabelian group, Transactions of American Mathematical Society, 361 (2009), 2085–2107. - [42] T. Satoh; First cohomologies and the Johnson homomorphisms of the automorphism group of a free group. Journal of Pure and Applied Algebra 217 (2013), 137–152. - [43] T. Satoh; A survey of the Johnson homomorphisms of the automorphism groups of free groups and related topics. Handbook of Teichmueller theory, volume V. (2016), 167–209. - [44] T. Satoh; On the low dimensional cohomology groups of the IA-automorphism group of a free group of rank three, Proc. of the Edinburgh Mathematical Society, to appear. - [45] T. Satoh; On twisted unstable cohomology groups of the automorphism groups of free groups, in preparation. - [46] C. Vespa; Extensions between functors from free groups, Bull. Lond. Math. Soc. 50 (2018), no. 3, 401–419. - [47] K. Vogtmann; Automorphisms of free groups and Outer space, Geom. Dedicata 94 (2002), 1–31