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Abstract

Let C be a conjugation on a complex Hilbert space H. If {z,} is a sequence of
unit vectors, then so is {Cxz, }. Under the assumption such that (T"— A)x,, — 0
(n — o0), we show spectral properties concerning with a sequence {Cz,} of unit

vectors.

1 Introduction and conjugation

Let ‘H be a complex Hilbert space with the inner product (-,-). First we introduce a

conjugation C' on H.

Definition 1.1 Let H be a complex Hilbert space. For a mapping C : ‘H — H is said

to be antilinear if
Clax+by)=aCx+bCy (Ya,be C, "z,y € H).
An antilinear operator C' is said to be a conjugation if

C?=1 and (Cx,Cy) = (y,z) (Yz,y €H).

If C is a conjugation, then ||Cz|| = ||z| for all z € H, i.e.,, C is isometric. In this paper,
when a sequence {z,} of unit vectors satisfies (T'— \)z,, — 0 (n — 00), we show spectral

properties concerning with a sequence {Cx,,} of unit vectors.

2  m-Complex symmetric operator

Let B(H) be the set of all bounded linear operators on a complex Hilbert space H.

Definition 2.1 An operator 7' € B(H) is said to be m-complex symmetric if
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5i(T50) =Y (1) (T) T . CT™ 0 = 0.
j=0

It holds that 6, (T;C) - (CTC) =T - 6, (T;C) = 6p+1(T; C).
Hence, if T' is m-complex symmetric, then 7" is n-complex symmetric for all n > m.

Theorem 2.2 Let T' be an m-complex symmetric operator and {x,} be a sequence of unit
vectors. For A € C, if (T —N)x, — 0(n — o0), then (T'—\)"Cxy, Cx,) — 0 (n — o0).
Hence, if (T'— N)x =0, then (T'— \)™Cx, Czx) = 0.

Proof. Since (T — N)x,, — 0 and C(T — \)"C = — Z(—l)j (T) (T* — Xj)C’Tm_jC’, it
j=1
holds o
(T = \)"Cap, Cy) = — Y (1)’ (T) (T = N)zp, CT™ I Cx,).
j=1

Hence we have Theorem 2.2. [
Corollary 2.3 Under the assumption of Theorem 2.2, we have:
(1) ((T* =Nz, 2n) — 0,

(2) (TF — \¥)Cz,, Cxp) — O forallk € N.

0 0

0 1

Example 2.4 Let T' = <
I

) and Cx = (2) for x = (?) on C2. Then for a vector
2
1y . . 0
T = (0>, it holds Tx = 0. But since Cx = (1>, we have

(I'Czx, Cxy= 1 # 0.

Theorem 2.5 Let T' be an m-complex symmetric operator and {x,} be a sequence of unit
vectors. For A € R, if (T — N)x,, — 0, then (T* —X\)"Cx,, — 0. Hence, if (T — )z =0,
then (T* — A\)™Cz = 0.

Proof. Since A € R, (T'— \)z,, — 0 and

C(T* = N)"C ==Y (-1 (T) CT*™ (T — N),
j=1
we have .
(T" = \)"Ca, = Y (~1) (T) CT*™C(T9 — N ).
j=1

Therefore we have Theorem 2.5. O



3 [m, C]-Symmetric operator

Definition 3.1 An operator T' € B(#) is said to be [m, C]-symmetric if

am(T;C) = i(—l)j (7) CT™ =0 . T9 = 0.

§=0
Then it holds (CTC) - v (T;C) — ap(T5C) - T = a1 (T C).
Hence, if T is [m, C]-symmetric, then T is [n, C]-complex symmetric for all n > m.
Also if T is [m, C]-symmetric, then so is T™*.

Theorem 3.2 Let T be [m, C|-symmetric and {z,} be a sequence of unit vectors. For
ANeC, if (T— Nz, — 0, then (T —\)™Cxz, — 0. Hence, if, for \ € C, (T — Nz =0,
then (T — A\)™Cx = 0.

Proof. Since T* is [m, C]-symmetric, o, (T*,C) = 0 and

am(T*,C)* = i(—l)j (T) ™= . CTIC = 0.

=0
Hence m

0=(> (-1) (T) T . CTIC)Cy
m

= (T =XN)"Cxn+ Y (1) (J

)Tm—f (CTIC -~ N)Cayp. O
j=1

If T is [m, C]-symmetric, then so is T* for any k € N (see [4]). Hence we have following

corollary.

Corollary 3.3 Under the assumption of Theorem 3.2, it holds

1(T* = XY Ca,|| — 0

for all k € N.

T2

2t 1 To
Example 3.4 Let T' = ( 1Z > and Cx = (2) for z = <x1> on C?. Then CTC =
1 Ty

1
T and T is [1, C]-symmetric. For an eigenvalue v/3i and an eigen-vector z = ((\/§ B 2)2.),
it holds

(T — V/3i)Cx = (4_\/5\/_326) # 0 and (T + V/3i)Cz = 0.



4 Skew m-complex operator

Definition 4.1 An operator T' € B(H) is said to be skew m-complex symmetric if

Zm:( )T*J CT™iC = 0.

j=0

Since it holds that
T* - ym(T5C) + (T3 C) - CTC = ym41 (T3 C),
if T is skew m-complex symmetric, then T is skew n-complex symmetric for all n > m.

Theorem 4.2 Let T be a skew m-complex symmetric operator and {x, } be a sequence of unit
vectors. For A € C, if (T—N)z, — 0 (n — o), then ((T+\)"Cxy, Cz,) — 0 (n — 00).
Hence, if (T — N)x =0, then (T'+ \)™Cx, Cx) = 0.

Proof. Since (T'— XN)z,, — 0 and C(T' +\)"C = Z( >)\ .CT™IC,
J

j=1

(T +N)"Cp, Czp) == ( ) — M)z, CT™ Cx,) O
7j=1
Example 4.3 If T is m-complex symmetric, then so is T for every n € N. But there exists
a skew 1-complex symmetric operator T such that 72 is not skew 1-complex symmetric. For

example, let

T = 140 0 ) and Cx = 2 for x = e on C2.
0 —1—1 X1 )

0

14
Then it is easy to see CTC = ( 0+ ! -
—1

> = —T* and hence T is skew 1-complex

2t 0
0 2

symmetric and not skew 1-complex symmetric.

symmetric. But since T? = ( >, we have CT?C = T?* and hence T? is complex

Theorem 4.4 Let T be a skew m-complex symmetric operator and {x,} be a sequence of
unit vectors. For A € C, if (T — Nz, — 0 (n — o), then (T*+X)"Cxz, — 0 (n — c0).
Hence, if (T — \)x =0, then ((T* + \)™Cx, Cz) = 0.

Proof. Since (T — N)z,, — 0,(CT'C — Xj)C’xn — 0 and

m

Clym(T;C))C = (7) T*m=i . oTmIC,

J=0



it holds

0= (T"+XN)"Cxp+ Y (T) T*m 3 (CTIC — N)Cy.
j=1

Hence, we have Theorem 4.4. [J

Corollary 4.5 Let T be skew m-complex symmetric. Then:
(1) If X € 0,(T), then —X € o, (T*).
(2) If X € 0,(T), then —\ € o, (T*).

By Theorem 4.4 since 0 € o, ((T* + X\)™), by the spectral mapping theorem of the approxi-
mate point spectrum, 0 € o,(T* + ) and hence —\ € 7, (T*).

5 Skew |m, C]-symmetric operator

Definition 5.1 An operator T' € B(H) is said to be skew [m, C|-symmetric if

m

(n(T:C) =Y (?) CTmic .19 = 0.

j=0
It holds CTC - (i (T5C) + (u(T5C) - T = Gy 1 (T C).

Therefore if T is skew [m, C]-symmetric, then T is skew [n, C]-symmetric for all n > m. If

T is skew [m, C]-symmetric, then it holds

0=Cumieye =y (M) erie T =, (ric)

Jj=0
and hence so is T™.

Theorem 5.2 Let T be a skew [m, C]-symmetric operator and {x,} be a sequence of unit
vectors. For A € C, if (T — Nz, — 0, then (T* + \)"Cz, — 0. Hence, if (T — \)x =0,
then (T* +X\)™Cz = 0.

Proof. Since (T'— XN)z,, — 0 and C((,(T™;C))*C = Z (Tjn) T .0TIC =0,

=0
0= (T" 4+ X)"zn + Y (m) T3 (CTIC — N)Cay.
~ J
j=1
Hence, we have Theorem 5.2. [
Corollary 5.3 Let T be skew [m, C|-symmetric. Then:

(1) If X € o,(T), then —X € o, (T*).



(2) If X € 0,(T), then —\ € o, (T*).

By Theorem 5.2 since 0 € o, ((T* +X)™), by the spectral mapping theorem of the approx-
imate point spectrum, 0 € o4(T* 4+ ) and hence —\ € o, (T™).

Example 5.4 Let

T = 1. 2 and Cz = E for x = o on C2.
2t —1 T1 T9

Then it holds CTC = —T and hence T is skew [1, C]-symmetric. For the eigenvalue V3 i of
1

T and the corresponding eigenvector x = ( v3 +i), we have
2

(T +V34)Cx = (_\2/;)—/?31,) #+ 0and (T — V3i)Cx =

Theorem 5.5 Let T be a skew [m, C]-symmetric operator and {x,} be a sequence of unit
vectors. For A\ € C, if (T'— Nz, — 0, then (T + \)"Cx,, Cz,) — 0. Hence, if
(T'— XNz =0, then ((T" + X\)"Cz, Cx) = 0.

Proof. Since CT*™C = — Z (T) T .CT*™ IO,

j=1
C(T* + )™ Z ( ) (T —N).cTmic,

Hence we have Theorem 5.5. [

Example 5.6 If T is [m, C]-symmetric, then so is T™ for every n € N. But there exists a

skew [1, C]-symmetric operator T such that T2 is not skew [1, C]-symmetric. For example,

let
T = _1. — and Cx = 2 for z = 1 on C2.
—21 1 T1 T2

1 2
Then it is easy to see CTC = ( 0 Zl ) = —T and hence T is skew [1, C]-symmetric.
/II —

-3 0
0 -3
skew [1, Cl-symmetric.

But since T2 = ( ), we have CT2C = T?. Hence T? is [1, C]-symmetric and not

6 Square hyponormal operator

We begin with the definition of square hyponormal operators.



Definition 6.1 An operator T' € B(H) is said to be square hyponormal if T? is hyponormal.

Following results are famous.

(1) If ker(T — z) Lker(T — w) for any distinct nonzero eigenvalues z and w, then T has
SVEP.
(2) Let p be polynomial. If p(T") has SVEP, then T has SVEP.

Hence, if T is square hyponormal, then 7" has SVEP.

In general, T is 2-hyponormal if ( Lo ) >0
T T*T
We have many papers about 2-hyponormal operators. So T is said to be square hyponormal
if T2 is hyponormal. About 2-hyponormal operators, please see “R. Curto and Woo Young
Lee, Towards a model theory for 2-hyponormal operators, Integr. Equat. Oper. Theory,
44(2002), 290-315".

Basic properties are the following:

Theorem 6.2 Let T' be square hyponormal. Then the following statements hold.

(1) If T is invertible, then so is T~ 1.

(2) Ifn=2k €N is even, then T™ is %-hyponormal.

(3) If S€ B(H) and S ~T, then S is square hyponormal.

(4) If T —t are square hyponormal for all t > 0, then T is hyponormal.
(5) If M is an invariant subspace for T, then T\ is square hyponormal.

By Aluthge and Wang’ result, T' is hyponormal, then 72 is semi-hyponormal. But we have

many examples non hyponormal operator 7" which 72 is hyponormal.

Curto and Han studied algebraically hyponormal operators.

For T', we set the following property:

(x)  o(T) N (=o(T)) {0}
Lemma 6.3 Let T satisfy (). If z is an isolated point of o(T), then 22 is an isolated point
of o(T?).
Proof. If z = 0, then it is clear. If z # 0, then proof follows from T2 — 22 = (T + 2)(T — 2)
and (x). O
Theorem 6.4 Let T be square hyponormal and satisfy (%), then o(T) ={Z : z € 0,(T) }.

Theorem 6.5 Let T' be square hyponormal and satisfy (x), M be an invariant subspace for
T such that o(T\ar) = {2}. Then:



(1) If z=0, then (Tjp)* = 0.
(2) If z#0, then Ty = 2.

Theorem 6.5 Let T' be square hyponormal and satisfy (x). Then:

(1) Let Tx = zx and Ty = wy. If z # w, then (z, y) = 0.
(2) Similar result holds for approrimate eigenvalues.

Theorem 6.6 Let T' be square hyponormal and satisfy (x). Let Tx = zx (2 # 0). Then
ker(T — z) = ker(T? — 22) C ker(T*? — ) = ker(T* — %).

Remark About proofs and other results, please see [1] - [5].
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