COMPACT VECTORIAL TOEPLITZ OPERATORS ON THE SEGAL-BARGMANN SPACE

PIOTR BUDZYŃSKI

ABSTRACT. The compactness of a Toeplitz operator acting on the Segal-Bargmann space of vector-valued functions is discussed. A sufficient condition written in terms of an associated operator-valued kernel is presented.

1. Introduction

Given be a positive measure ν on $\mathscr{B}(\mathbb{C}^n)$, the σ -algebra of Borel sets in \mathbb{C}^n , we denote by $L^2(\nu)$ the space of all square-summable (with respect to ν) complex-valued Borel functions on \mathbb{C}^n and by $\nu \otimes \nu$ we denote the product measure on $\mathscr{B}(\mathbb{C}^n \times \mathbb{C}^n) = \mathscr{B}(\mathbb{C}^{2n})$.

Suppose

$$\mu_{\mathbf{G}}(\sigma) = \frac{1}{\pi^n} \int_{\sigma} \exp\left(-|z|^2\right) dV(z), \quad \sigma \in \mathscr{B}(\mathbb{C}^n),$$

is the n-dimensional Gaussian measure on \mathbb{C}^n (here V denotes the Lebesgue measure on $\mathscr{B}(\mathbb{C}^n)$). A closed subspace of $L^2(\mu_{\mathbf{G}})$ consisting of all analytic functions belonging to $L^2(\mu_{\mathbf{G}})$ is called the *Segal-Bargmann space* and is denoted by \mathcal{B} . \mathcal{B} turns out to be reproducing kernel Hilbert space (RKHS) with the kernel $k(z,w) = \exp{\langle z,w \rangle}, z,w \in \mathbb{C}^n$.

Let \mathcal{H} be a separable Hilbert space. Then the space of all analytic functions $F \colon \mathbb{C}^n \to \mathcal{H}$ such that $\int_{\mathbb{C}^n} \|F(z)\|^2 \mathrm{d}\mu_{\mathbf{G}}(z) < \infty$ can be identified with he Hilbert tensor product of \mathcal{B} and \mathcal{H} , denoted as usual by $\mathcal{B} \otimes \mathcal{H}$. We call it a *(vectorial) Segal-Bargmann* space. For $f \in \mathcal{B}$ and $h \in \mathcal{H}$, $f \otimes h$ stands for the function defined as $(f \otimes h)(z) = f(z)h$, $z \in \mathbb{C}^n$. The Segal-Bargmann space has the following reproducing property:

$$(1.1) \langle F, k_z \otimes h \rangle = \langle F(z), h \rangle, \quad z \in \mathbb{C}^n, h \in \mathcal{H}, F \in \mathcal{B} \otimes \mathcal{H}.$$

Now, suppose $\Phi \colon \mathbb{C}^n \to \mathbf{B}(\mathcal{H})$ is a Borel function. We define the *(vectorial) Toeplitz operator*

$$\mathsf{T}_\Phi \colon \mathcal{B} \otimes \mathcal{H} \supseteq \mathscr{D}(\mathsf{T}_\Phi) \to \mathcal{B} \otimes \mathcal{H}$$

by the formula

$$\begin{split} \mathscr{D}(\mathsf{T}_\Phi) &= \big\{ F \in \mathcal{B} \otimes \mathcal{H} \colon \Phi F \in L^2(\mu_\mathbf{G}) \otimes \mathcal{H} \big\}, \\ \mathsf{T}_\Phi F &= \mathsf{P}(\Phi F), \quad F \in \mathscr{D}(\mathsf{T}_\Phi), \end{split}$$

where P denotes the orthogonal projection from $L^2(\mu_{\mathbf{G}}) \otimes \mathcal{H}$ onto $\mathcal{B} \otimes \mathcal{H}$. Clearly, due to the reproducing property (1.1) we have

(1.2)

$$\langle (\mathsf{T}_{\Phi} F)(z), h \rangle = \int_{\mathbb{C}^n} \langle \Phi(w) F(w), h \rangle \overline{k_z(w)} d\mu_{\mathbf{G}}(w), \quad z \in \mathbb{C}^n, F \in \mathscr{D}(\mathsf{T}_{\Phi}), h \in \mathcal{H},$$

where $k_{\lambda}(z) = \exp \langle z, \lambda \rangle$, $z \in \mathbb{C}^n$. Throughout what follows the linear span of $\{k_{\lambda} \otimes g \colon \lambda \in \mathbb{C}^n, g \in \mathcal{H}\}$ is denoted by $\mathcal{K} \otimes \mathcal{H}$.

Toeplitz operators on Segal-Bargmann spaces appear in the quantization of classical mechanics and are related to pseudodifferential operators (see [1, 12, 13, 14, 18, 19, 20]). They have been studied since the work of Berezin (see [5, 6]) both in the classical context (see, e.g., [2, 3, 10, 11, 15, 16, 17]) and also in the more general setting (see, e.g., [8, 9]).

2. Compactness

Among the many questions on Toeplitz operators (not necessarily acting on Segal-Bargmann space) that have been addressed in the literature one was the question of the compactness of these operators. A classical and well-known results due to Stroethoff (see [21, Theorem 5]) states

Theorem 2.1. Let $\phi \in L^{\infty}(\mathbb{C}^n)$. Then the Toeplitz operator T_{ϕ} acting on the Segal-Bargmann space \mathcal{B} is compact if and only if

(2.1)
$$\lim_{|\lambda| \to \infty} ||P(\phi \circ \tau_{\lambda})|| = 0$$

where τ_{λ} is the translation on \mathbb{C}^n by λ and P is the orthogonal projection from $L^2(\mu_{\mathbf{G}})$ onto \mathcal{B}

The above is related to a characterization of compact multiplication operators in terms of Berezin symbols due to Berger and Coburn (see [7, Theorem C]). Similar results to Theorem 2.1 can be proved in other classical RKHS's (see [22] for more on this). Hence the question arises as to whether one can characterize the compactness of the Toeplitz operator acting in a vectorial Segal-Bargmann space via the oscillation at infinity type condition. An attempt to answer this has been tackled recently in [4].

Suppose
$$\mathcal{H} \otimes \mathcal{H} \subseteq \mathcal{D}(\mathsf{T}_{\Phi})$$
 and $z, w \in \mathbb{C}^n$. Let $\Xi_{\Phi}(z, w) \in \mathbf{B}(\mathcal{H})$ be given by

$$\Xi_{\Phi}(z,w)g = \int_{\mathbb{C}^n} \Phi_z(u)g \,\overline{k_w(u)} \,\mathrm{d}\mu_{\mathbf{G}}(u) = \mathsf{P}(\Phi_z \otimes g)(w), \quad g \in \mathcal{H}.$$

The operator kernel above is used as a vectorial counterpart of $P(\phi \circ \tau_z)$ in possible generalizations of the condition of oscillation at infinity (2.1). The first comes from [4, Proposition 3.7]

(2.2)
$$\lim_{|z| \to \infty} \int_{\mathbb{C}^n} \|\Xi_{\Phi}(z, w)g\|^2 d\mu_{\mathbf{G}}(w) = 0, \quad g \in \mathcal{H}.$$

Another possible generalization of (2.1) comes from [4, Theorem 3.6]

(2.3)
$$\lim_{|z| \to \infty} \int_{\mathbb{C}^n} \|\Xi_{\Phi}(z, w)\|_{\mathrm{HS}}^2 \mathrm{d}\mu_{\mathbf{G}}(w) = 0.$$

Here, and alter on, $||A||_{HS}$ stands for the Hilbert-Schmidt norm of an operator A. The conditions differ essentially and what is more none of them characterizes the compactness of vectorial Toeplitz operators. Nonetheless we have the following.

Proposition 2.2 ([4, Proposition 3.7]). Let $T_{\Phi} \in \mathbf{B}(\mathcal{B} \otimes \mathcal{H})$ be compact. Then (2.2) is satisfied.

On the other hand we also have

Theorem 2.3 ([4, Theorem 3.6]). Let $\Phi \in L^{\infty}(\mu_{\mathbf{G}}; \mathbf{HS}(\mathcal{H}))$. Suppose that (2.3) holds. Then T_{Φ} is compact.

It is important to note that there is a non-compact vectorial Toeplitz operator which satisfies (2.2).

Example 2.4 ([4, Example 3.9]). Let $\phi \colon \mathbb{C}^n \to \mathbb{C}$ be a non-zero function such that the Toeplitz operator T_{ϕ} on \mathcal{B} is compact. Let \mathcal{H} be an infinite dimensional Hilbert space and $\Phi \colon \mathbb{C}^n \to \mathbf{B}(\mathcal{H})$ be given by $\Phi(z) = \phi(z) I$, where I is the identity operator on \mathcal{H} . Then by [21, Theorem 5] we have

(2.4)
$$\lim_{|z| \to \infty} \int_{\mathbb{C}^n} |P(\phi \circ \tau_z)(w)|^2 d\mu_{\mathbf{G}}(w) = 0,$$

and so (2.2) holds. On the other hand, T_{Φ} is not compact as the image of $\{\chi_{\mathbb{C}^n} \otimes e_i \colon i \in \mathbb{N}\}$ via T_{Φ} , where $\{e_i \colon i \in \mathbb{N}\}$ is an orthonormal basis of \mathcal{H} , does not contain a convergent subsequence.

Also worth noting that condition (2.3) may characterize the compactness of T_{Φ} only in the case when Φ is $\mathsf{HS}(\mathcal{H})$ -valued which is not necessary.

Example 2.5 ([4, Example 3.10]). Let \mathcal{H} be an infinite dimensional Hilbert space and let A be a compact operator A which is not Hilbert-Schmidt. Put $\Phi(z) = \phi(z)A$, $z \in \mathbb{C}^n$, where $\phi \colon \mathbb{C}^n \to \mathbb{C}$ is a non-zero function such that T_{ϕ} on \mathcal{B} is compact. Then T_{Φ} is compact, however (2.3) does not hold.

All the above means that characterizing the compactness of Toeplitz operators on vectorial Segal-Bargmann space remains to be an open problem and calls for further attention.

3. Acknowledgments

The author wishes to thank Professor Muneo Chō and RIMS (Kyoto University) for their support during his visit in Japan in October, 2019.

References

- V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.
- [2] W. Bauer, Y.J. Lee, Commuting Toeplitz operators in on the Segal-Bargmann space, J. Funct. Anal. 260 (2011), 460-489.
- [3] L.A. Coburn. W. Bauer, J. Isralowitz, Heat flow, BMO, and the compactness of Toeplitz operators, J. Funct. Anal. 259 (2010), 57-78.
- [4] T. Beberok, P. Budzyński, D.-O. Kang, Compact vectorial Toeplitz operators on the Segal-Bargmann space, J. Math. Anal. Appl. 481 (2020), Article 123460.
- [5] F. A. Berezin, Quantization, Math. USSR-Izv. 8 (1974), 1109-1163.
- [6] F. A. Berezin, Quantization in complex symmetric spaces, Math. USSR-Izv. 9 (1975), 341-379.
- [7] C. A. Berger, L. A. Coburn, Toeplitz operators on the Segal-Bargmann space, Trans. Amer. Math. Soc. 301 (1987), 813-829.
- [8] D. Cichoń, Generalization of the Newman-Shapiro isometry theorem and Toeplitz operators, Integr. Eq. Oper. Theory 34 (1999), 414-438.
- [9] D. Cichoń, H. S. Shapiro, Toeplitz operators in Segal-Bargmann spaces of vector-valued functions. Math. Scand. 93 (2003), 275–296.
- [10] L. A. Coburn, J. Isralowitz, B. Li, Toeplitz opertors with BMO symbols on the Segal-Bargmann space, Trans. Amer. Math. Soc. 363 (2011), 3015-3030.
- [11] M. Engliš, Berezin transform on the harmonic Fock space, J. Math. Anal. Appl. 367 (2010), 75-97.
- [12] A. Grossmann, G Loupias, E. M. Stein, An algebra of pseudo-differential operators and quantum mechanics in phase space, Ann. Inst. Fourier (Grenoble) 18 (1968), 343-368.
- [13] V. Guillemin, Toeplitz operators in n-dimensions, Integ. Eq. Oper. Theory 7 (1984), 145-205
- [14] R. Howe, Quantum mechanics and partial differential equations, J. Funct. Anal. 38 (1980), 188-254.
- [15] J. Isralowitz, K. Zhu, Toeplitz operators on the Fock space, Integral. Eq. Oper. Theory 66 (2010), 593-611.
- [16] J. Janas, Unbounded Toeplitz operators in the Bargmann-Segal space, Studia Math. 99 (1991), 87-99.
- [17] J. Janas, J. Stochel, Unbounded Toeplitz operators in the Segal-Bargmann space. II, J. Funct. Anal. 126 (1994), 418-447.
- [18] D.J. Newman and H. S. Shapiro, Certain Hilbert spaces of entire functions, Bull. Amer. Math. Soc. 72 (1966), 971-977.
- [19] D.J. Newman and H. S. Shapiro, Fischer spaces of entire functions, in: Entire Functions and Related Parts of Analysis, J. Korevaar (ed.), Proc. Sympos. Pure Math. 11, Amer. Math. Soc., Providence, RI, 1968, 360-369.
- [20] I.E. Segal, Lectures at the Summer Seminar on Applied Mathematics, Boulder, CO, 1960.
- [21] K. Stroethoff, Hankel and Toeplitz operators on the Fock space, Mich. Math. J. 39 (1992), 3-16.
- [22] K. Stroethoff, The Berezin transform and operators on spaces of analytic functions, Banach Center Publ. 38 (1997), 361-380.

KATEDRA ZASTOSOWAŃ MATEMATYKI, UNIWERSYTET ROLNICZY W KRAKOWIE, UL. BALICKA 253C, 30-198 KRAKÓW, POLAND

Email address: piotr.budzynski@urk.edu.pl