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1 Introduction

Witten zeta-functions were introduced as partition functions of quantum gauge theories and

are expressed as

ζW (s;G) =
∑
ψ

1

(dimψ)s
, (1.1)

where ψ runs over all finite dimensional irreducible representations of a connected compact

semisimple Lie group G [20, 21]. Some of these zeta-functions are explicitly given as the

following multiple Dirichlet series:

∞∑
m=1

1

ms
= ζ(s), (1.2)

∞∑
m,n=1

2s

msns(m+ n)s
, (1.3)

∞∑
m,n=1

6s

msns(m+ n)s(m+ 2n)s
. (1.4)

In [2–6, 8–10, 13] we consider multivariable analog of the above zeta-functions and call them

zeta-functions of root systems and studied their special values at integers and established value
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relations among them. For example, (1.3) is generalized as

ζ2(s12, s23, s13;A2) =

∞∑
m,n=1

1

ms12ns23(m+ n)
s13 , (1.5)

and a special value is given as

ζ2(2, 2, 2;A2) =
1

6
(−1)3

1

3780

(2πi)2+2+2

2!2!2!
=

π6

2835
, (1.6)

where 1
3780 is given by multiple analog of Bernoulli numbers. Then the next question arises nat-

urally: What about functional relations? In the case of Euler-Zagier multiple zeta-functions,

only harmonic products are known as functional relations on the whole space: For s1, s2 ∈ C,

ζEZ,2(s1, s2) + ζEZ,2(s2, s1) = ζ(s1 + s2)− ζ(s1)ζ(s2). (1.7)

If we admit the restriction of the domain, we also have another type of functional relation [7,16].

As for the multiple zeta-functions of root systems, it is known that there are some functional

relations. One of such relations is given in [5, 17,19]. For k12, k13 ∈ N and s23 ∈ C,

ζ2(k12, s23, k13;A2) + (−1)k12ζ2(k12, k13, s23;A2) + (−1)k12+k13ζ2(s23, k13, k12;A2).

= 2

[k12/2]∑
j2=0

(−1)k12
(
k12 + k13 − 1− 2j2

k13 − 1

)
ζ(2j2)ζ(k12 + k13 + s23 − 2j2)

+ 2

[k13/2]∑
j3=0

(−1)k13
(
k12 + k13 − 1− 2j3

k12 − 1

)
ζ(2j3)ζ(k12 + k13 + s23 − 2j3).

(1.8)

In particular, for k12 = k13 = s23 = 3, we have

(1− 1 + 1)ζ2(3, 3, 3;A2) = −40ζ(0)ζ(9)− 12ζ(2)ζ(7). (1.9)

Our main purpose is to generalize this formula, that is, we understand the left-hand side by a

group theoretic interpretation and the right-hand side by the Poincaré polynomials. For the

details, see the forthcoming paper [14].

2 Zeta-Functions of Root Systems

2.1 Root Systems

Let V be an r dimensional real vector space with inner product ⟨·, ·⟩ and ∆ ⊂ V be a root

system. Let σα be the reflection with respect to the hyperplane Hα orthogonal to α ∈ ∆ and

W be the Weyl group, which is generated by all reflections σα. Let α∨ be the coroot of α,

which is equal to 2α/⟨α, α⟩ and ∆+ be the set of all positive roots. Let {α1, . . . , αr} be the

fundamental roots of ∆, which consists of a basis such that α = c1α1 + · · ·+ crαr ∈ ∆+ with
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all ci ≥ 0. Let P++ =
⊕

Z≥1λi be the set of all strictly dominant weights, where {λ1, . . . , λr}
is a dual basis of {α∨

1 , . . . , α
∨
r }. For the geometric meaning of these symbols, see the following

example [1].

Example 1. A2 case:

Hα1

α1 + α2

α1

α2

α∨
1

α∨
2

λ2

λ1

Example 2. C2 case: α∨
1

α∨
2

G2: α∨
1

α∨
2

2.2 Zeta-Functions of Root Systems

Definition 1 (Zeta-functions of root systems [3], multivariable Lerch analog). For a root

system ∆ and for s = (sα)α∈∆+
∈ C|∆+| and y ∈ V , define

ζr(s,y;∆) =
∑

λ∈P++

e2πi⟨y,λ⟩
∏
α∈∆+

1

⟨α∨, λ⟩sα
, (2.1)

Example 3. We obtain the corresponding zeta-functions by formally replacing α∨
1 and α∨

2 by

m and n appearing in positive coroots. For example, in the root systems of rank 2, we have

ζ2(s,y;A2) =

∞∑
m,n=1

e2πi(my1+ny2)

ms1ns2(m+ n)s3
, (2.2)

ζ2(s,y;C2) =

∞∑
m,n=1

e2πi(my1+ny2)

ms1ns2(m+ n)s3(m+ 2n)s4
, (2.3)

ζ2(s,y;G2) =

∞∑
m,n=1

e2πi(my1+ny2)

ms1ns2(m+ n)s3(m+ 2n)s4(m+ 3n)s5(2m+ 3n)s6
. (2.4)
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Here and hereafter if the root system ∆ is of type Xr, we write ζr(s,y;Xr) instead of

ζr(s,y;∆) for short.

3 Special Zeta-Values (Review)

We extend s = (sα)α∈∆+
to (sα)α∈∆ by sα = s−α and define (ws)α = sw−1α. Then we have

the following.

Theorem 1 (value relations [3, 5]). For s = k = (kα)α∈∆+
∈ Z|∆+|

≥2 , we have

∑
w∈W

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k, w−1y;∆) = (−1)|∆+|P (k,y;∆)

( ∏
α∈∆+

(2πi)kα

kα!

)
, (3.1)

where P (k,y;∆) is a multiple periodic Bernoulli function, which will be defined below.

Theorem 2 (special values [3, 5]). For k = (kα)α∈∆+
∈ (2Z≥1)

|∆+| satisfying w−1k = k for

all w ∈W ,

ζr(k,0;∆) =
(−1)|∆+|

|W |
P (k,0;∆)

( ∏
α∈∆+

(2πi)kα

kα!

)
∈ Qπ

∑
α∈∆+

kα . (3.2)

Example 4.

ζ(2) =
−1

2

1

6

(2πi)2

2!
=
π2

6
.

ζ2((2, 4, 4, 2),0;C2) =

∞∑
m,n=1

1

m2n4(m+ n)4(m+ 2n)2

=
(−1)4

222!

53

1513512000

(
(2πi)2

2!

)2(
(2πi)4

4!

)2

=
53

6810804000
π12.

(3.3)

4 Multiple Periodic Bernoulli Functions (Review)

Let V be the set of all bases V ⊂ ∆+ and V∗ = {µV
β }β∈V be the dual basis of V∨ =

{β∨}β∈V. Let Q∨ =
⊕r

i=1 Zα∨
i be the coroot lattice and L(V∨) =

⊕
β∈V Zβ∨. Note that

|Q∨/L(V∨)| < ∞. Fix a certain ϕ ∈ V and define a multiple generalization of the fractional

part of real numbers as

{y}V,β =

{
{⟨y, µV

β ⟩} (⟨ϕ, µV
β ⟩ > 0),

1− {−⟨y, µV
β ⟩} (⟨ϕ, µV

β ⟩ < 0).
(4.1)
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Definition 2 (generating functions [3, 5]). For t = (tα)α∈∆+
,

F (t,y;∆) =
∑
V∈V

( ∏
γ∈∆+\V

tγ
tγ −

∑
β∈V tβ⟨γ∨, µV

β ⟩

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(∏
β∈V

tβ exp(tβ{y + q}V,β)
etβ − 1

)
.

(4.2)

Definition 3 (multiple periodic Bernoulli functions [3, 5]).

F (t,y;∆) =
∑

k∈Z
|∆+|
≥0

P (k,y;∆)
∏
α∈∆+

tkαα
kα!

. (4.3)

Remark. The A1 case reduces to the classical generating function:

F (t, y) =
tet{y}

et − 1
=

∞∑
k=0

Bk({y})
tk

k!
. (4.4)

5 Functional Relations

Let I be a subset of {1, . . . , r}. We will see that this determines which variables are complex.

Let ∆I be the subroot system of ∆ with the fundamental roots {αi}i∈I andW I be the minimal

coset representatives of W/WI with the Weyl group WI of ∆I , that is, W =WIW
I .

Theorem 3 (functional relations). For s = (sα)α∈∆+
with sα ∈ C (α ∈ ∆I+) and sα = kα ∈

Z≥2 (α ∈ ∆+ \∆I+), we have

∑
w∈W I

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1s, w−1y;∆)

= (−1)|∆+\∆I+|
( ∏
α∈∆+\∆I+

(2πi)kα

kα!

) ∑
λ∈PI++

( ∏
α∈∆I+

1

⟨α∨, λ⟩sα

)
P (k,y, λ; I;∆), (5.1)

where P (k,y, λ; I;∆) is a multiple periodic Bernoulli function associated with I, which will be

defined below.

It should be noted that generally, the right-hand side consists of sum of several zeta-functions

of lower rank.

Example 5. In the root system of type A2, we choose I = {2}, which we express as the

following diagram

��
��

α1c α2c (5.2)
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where the circled node belongs to I. Then we have

ζ2(k12, s23, k13;A2) + (−1)k12ζ2(k12, k13, s23;A2) + (−1)k12+k13ζ2(s23, k13, k12;A2)

= (−1)2
(
(2πi)k12

k12!

(2πi)k13

k13!

)
×

∞∑
m=1

1

ms23

(
b0

mk12+k13
+

b2
mk12+k13−2

+ · · ·+ bj
mk12+k13−2j

)
,

(5.3)

where j = max{[k12/2], [k13/2]} and b0, . . . , bj are certain real numbers. It should be noted

that the right-hand side consists of sum of several Riemann zeta-functions.

To define a multiple periodic Bernoulli function associated with I, we need some definitions.

Let VI be the set of all bases of the form V = VI ∪ {αi | i ∈ I} with VI = {γ1, . . . , γd} ⊂
∆+ \∆I+ and pV⊥

I
be the projection defined by

pV⊥
I
(v) = v −

∑
γ∈VI

µV
γ ⟨γ∨, v⟩ (5.4)

for v ∈ V .

Then we obtain the following:

Theorem and Definition 4 (generating function). For tI = (tα)α∈∆+\∆I+
and λ ∈ PI ,

F (tI ,y, λ; I;∆) =
∑
V∈VI

( ∏
γ∈∆+\∆I+∪VI

tγ

tγ −
∑
β∈VI

tβ⟨γ∨, µV
β ⟩ − 2π

√
−1⟨γ∨, pV⊥

I
(λ)⟩

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

exp(2π
√
−1⟨y + q, pV⊥

I
(λ)⟩)

( ∏
β∈VI

tβ exp(tβ{y + q}V,β)
etβ − 1

)
=

∑
k∈N

|∆+\∆I+|
0

P (k,y, λ; I;∆)
∏

α∈∆+\∆I+

tkαα
kα!

.

(5.5)

In particular, if I = ∅, F (tI ,y, λ; I;∆) reduces to the generating function for value relations:

F (t∅,y, λ; ∅;∆) = F (t,y;∆) =
∑
V∈V

( ∏
γ∈∆+\V

tγ
tγ −

∑
β∈V tβ⟨γ∨, µV

β ⟩

)
× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

(∏
β∈V

tβ exp(tβ{y + q}V,β)
etβ − 1

)
.

(5.6)

Remark. In the proof of this theorem, we use the results in [12].
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6 Examples

6.1 Ar Case

We use the following realization of the root system of type Ar:

∆+ = {ei − ej | 1 ≤ i < j ≤ r + 1} ⊂ Rr+1, (⟨ei, ej⟩ = δij). (6.1)

Then the zeta-function of type Ar is expressed as

ζr((sij)1≤i<j≤r, (yi)1≤i≤r;Ar) =

∞∑
m1=1

· · ·
∞∑

mr=1

exp(2π
√
−1

∑
1≤i≤rmiyi)∏

1≤i<j≤r+1(mi + · · ·+mj−1)sij
. (6.2)

We choose I = {2, . . . , r} and Ic = {1} as in the following Dynkin diagram.�
�

�
�α1c α2c c �������� c c c αrc (6.3)

Then we have the following theorem:

Theorem 5 (generating function). Put te1−ei = ti for 2 ≤ i ≤ r + 1.

F ((ti)2≤i≤r+1, (yj)1≤j≤r, (mi)2≤i≤r; {2, . . . , r};Ar)

=

r+1∑
j=2

j−1∏
i=2

ti

ti − tj + 2π
√
−1(mi + · · ·+mj−1)

r+1∏
i=j+1

ti

ti − tj − 2π
√
−1(mj + · · ·+mi−1)

× exp
(
2π

√
−1

(j−1∑
i=2

mi(yi − y1) +

r∑
i=j

miyi

)) tj exp(tj{y1})
etj − 1

.

(6.4)

Theorem 6 (multiple periodic Bernoulli function).

F ((ti)2≤i≤r+1, (yj)1≤j≤r, (mi)2≤i≤r; {2, . . . , r};Ar)

=
∑

k2,...,kr+1≥0

P ((ki)2≤i≤r+1, (yj)1≤j≤r, (mi)2≤i≤r; {2, . . . , r};Ar)
tk22 · · · tkr+1

r+1

k2! · · · kr+1!
, (6.5)

where

P ((ki)2≤i≤r+1, (yj)1≤j≤r, (mi)2≤i≤r; {2, . . . , r};Ar)

= k2! · · · kr+1!

r+1∑
j=2

(r+1∏
i=2
i ̸=j

δki ̸=0

)
exp

(
2π

√
−1

(j−1∑
i=2

mi(yi − y1) +

r∑
i=j

miyi

))

×
( ∑

l2,...,lr+1≥0
l2+···+lr+1=kj

Blj ({y1})
lj !

∏
2≤i≤r+1
i ̸=j

(−1)ki−1

(
ki + li − 1

li

)( 1

2π
√
−1mij

)ki+li)
,

(6.6)
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with

mij =

{
mi + · · ·+mj−1 (i < j)

−(mj + · · ·+mi−1) (i > j).
(6.7)

Theorem 7. For (sij)1≤i<j≤r+1 with s1j = k1j (2 ≤ j ≤ r + 1), we have

r∑
j=0

( j∏
i=1

(−1)k1,i+1

)
ζr((s(1···j+1)pq)1≤p<q≤r+1, (y2 − y1, . . . , yj+1 − y1, yj+1, . . . , yr);Ar)

= −
r+1∑
j=2

∑
l2,...,lr+1≥0

l2+···+lr+1=k1,j

(−1)k1,2+···+k1,j−1+lj+1+···+lr+1(2π
√
−1)lj

Blj ({y1})
lj !

×
∏

2≤i≤r+1
i ̸=j

(
k1,i + li − 1

li

)
ζr−1((spq + δp<jδq=j(k1,p + lp) + δp=jδq>j(k1,q + lq))2≤p<q≤r+1,

(y2 − y1, . . . , yj−1 − y1, yj , . . . , yr);Ar−1).

(6.8)

Remark. It should be noted that this is a special case. Generally, ζr(s,y;Xr)’s are not nec-

essarily described in terms of ζr−1(s,y;Xr−1). It depends on the pair (Xr, I). We need more

general multiple zeta-functions, which may not be classified as zeta-functions of root systems.

Remark. Other special cases are (Br, {2, . . . , r}), (Cr, {2, . . . , r}).

Example 6. Set r = 2, (y1, y2) = (0, 0). For s23 ∈ C,

ζ2(k12, s23, k13;A2) + (−1)k12ζ2(k12, k13, s23;A2) + (−1)k12+k13ζ2(s23, k13, k12;A2)

= 2

[k12/2]∑
j2=0

(−1)k12
(
k12 + k13 − 1− 2j2

k13 − 1

)
ζ(2j2)ζ(k12 + k13 + s23 − 2j2)

+ 2

[k13/2]∑
j3=0

(−1)k12
(
k12 + k13 − 1− 2j3

k12 − 1

)
ζ(2j3)ζ(k12 + k13 + s23 − 2j3).

(6.9)

Example 7. Set r = 3, (y1, y2, y3) = (0, 0, 0). For (s23, s24, s34) ∈ C3,

ζ3(k12, k13, k14, s23, s24, s34;A3) + (−1)k12+k13ζ3(s23, k12, s24, k13, s34, k14;A3)

+ (−1)k12ζ3(k12, s23, s24, k13, k14, s34;A3) + (−1)k12+k13+k14ζ3(s23, s24, k12, s34, k13, k14;A3)

= 2

[k12/2]∑
j2=0

∑
l3,l4≥0

l3+l4=k12−2j2

(−1)k12
(
k13 + l3 − 1

l3

)(
k14 + l4 − 1

l4

)
× ζ(2j2)ζ2(s23 + k13 + l3, s24 + k14 + l4, s34;A2)

+ 2

[k13/2]∑
j3=0

∑
l2,l4≥0

l2+l4=k13−2j3

(−1)k12+l4
(
k12 + l2 − 1

l2

)(
k14 + l4 − 1

l4

)
(6.10)

× ζ(2j3)ζ2(s23 + k12 + l2, s24, s34 + k14 + l4;A2)
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+ 2

[k14/2]∑
j4=0

∑
l2,l3≥0

l2+l3=k14−2j4

(−1)k12+k13
(
k12 + l2 − 1

l2

)(
k13 + l3 − 1

l3

)
× ζ(2j4)ζ2(s23, s24 + k12 + l2, s34 + k13 + l3;A2).

6.2 Various Expressions

In particular, if k12 = k13 = k14 = s23 = s24 = s34 = 2,

4ζ3(2, 2, 2, 2, 2, 2;A3) = 2ζ(2){2ζ2(4, 4, 2;A2) + ζ2(4, 2, 4;A2)}
− 6ζ2(6, 4, 2;A2)− 6ζ2(6, 2, 4;A2)− 8ζ2(5, 5, 2;A2)

+ 4ζ2(5, 2, 5;A2)− 6ζ2(4, 6, 2;A2).

(6.11)

On the other hand, we obtained already in [2, Eq. (4.28)]

4ζ3(2, 2, 2, 2, 2, 2;A3) = 8ζ(2) {ζ2(4, 4, 2;A2) + ζ2(3, 5, 2;A2)}
− 12ζ2(6, 4, 2;A2) + 12ζ2(5, 5, 2;A2)− 6ζ2(4, 6, 2;A2).

(6.12)

Remark. These two expressions are transformed into each other by use of partial fraction

decompositions.

Remark. (Open Problem) However in general Ar cases, we have two different expressions of

the right-hand side and we do not know whether these two expressions are transformed into

each other by use of partial fraction decompositions. Thus these expressions may give new

value relations.

6.3 Br Case

Theorem 8 (generating function for Br case with I
c = {1}). We use the following realization:

∆+ = {ei ± ej | 1 ≤ i < j ≤ r} ∪ {ej | 1 ≤ j ≤ r}. (6.13)

Put te1±ei = t±i for 2 ≤ i ≤ r and te1 = t1.

F (t1, (t±i)2≤i≤r, (yj)1≤j≤r, (mi)2≤i≤r; {2, . . . , r};Br)

=

r∑
j=2

∏
2≤i<j

t−i

t−i − t−j + 2π
√
−1(mi + · · ·+mj−1)

∏
j<i≤r

t−i

t−i − t−j − 2π
√
−1(mj + · · ·+mi−1)

×
∏

2≤i≤j

t+i

t+i − t−j − 2π
√
−1(mi + · · ·+mj−1 + 2(mj + · · ·+mr−1) +mr)

×
∏
j<i≤r

t+i

t+i − t−j − 2π
√
−1(mj + · · ·+mi−1 + 2(mi + · · ·+mr−1) +mr)

× t1

t1 − 2t−j − 2π
√
−1(2(mj + · · ·+mr−1) +mr)
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× exp
(
2π

√
−1

(j−1∑
i=2

mi(yi − y1) +

r∑
i=j

miyi

)) t−j exp(t−j{y1})
et−j − 1

+

r∑
j=2

∏
2≤i≤j

t−i

t−i − t+j + 2π
√
−1(mi + · · ·+mj−1 + 2(mj + · · ·+mr−1) +mr)

×
∏
j<i≤r

t−i

t−i − t+j + 2π
√
−1(mj + · · ·+mi−1 + 2(mi + · · ·+mr−1) +mr)

×
∏

2≤i<j

t+i

t+i − t+j − 2π
√
−1(mi + · · ·+mj−1)

∏
j<i≤r

t+i

t+i − t+j + 2π
√
−1(mj + · · ·+mi−1)

× t1

t1 − 2t+j + 2π
√
−1(2(mj + · · ·+mr−1) +mr)

× exp
(
2π

√
−1

(j−1∑
i=2

mi(yi − y1) +

r−1∑
i=j

mi(yi − 2y1) +mr(yr − y1)
)) t+j exp(t+j{y1})

et+j − 1

+
∏

2≤i≤r

t−i

t−i − t1 + π
√
−1(2(mi + · · ·+mr−1) +mr)

×
∏

2≤i≤r

t+i

t+i − t1 − π
√
−1(2(mi + · · ·+mr−1) +mr)

× 1

2

(
exp

(
2π

√
−1

(r−1∑
i=2

mi(yi − y1) +mr(yr −
1

2
y1)

)) t1 exp(t1{ 1
2y1})

et1 − 1

+ exp
(
2π

√
−1

(r−1∑
i=2

mi(yi − (y1 + 1)) +mr(yr −
1

2
(y1 + 1))

)) t1 exp(t1{ 1
2 (y1 + 1)})

et1 − 1

)
Note that by expanding this expression, we see that we obtain functional relations among

ζr(·;Br) and ζr−1(·;Br−1) similar to those in the case of type Ar obtained in Theorem 7.

6.4 Xr with |I| = 1 Case

In the case |I| = 1, we will see that the sum of some ζr(·;Xr) is expressed in terms of Lerch

zeta-functions. Let ϕ(u, s) be the Lerch zeta-function defined by

ϕ(u, s) =

∞∑
n=1

e2π
√
−1un

ns
. (6.14)

Theorem 9. Let sα = kα ∈ Z≥2 for α ∈ ∆+ \ {αi} and sαi
∈ C. Let |k| =

∑
α∈∆+\{αi} kα.

Let Xi = {ν = {⟨q, µV
αi
⟩} | V ∈ VI , q ∈ Q∨/L(V∨)} ⊂ Q.

∑
w∈W I

( ∏
α∈∆w−1

(−1)−kα
)
ζr(w

−1s, 0;∆)

= (−1)|∆+|−1

( ∏
α∈∆+\{αi}

(2π
√
−1)kα

kα!

) ∑
ν∈Xi

|k|∑
j=0

bkνj

(2π
√
−1)j

ϕ(ν, sαi
+ j), (6.15)
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where bkνj ∈ Q is given by

∑
k∈N|∆∗|

0

∑
ν∈Xi

|k|∑
j=0

bkνjx
jyν

∏
α∈∆∗

tkαα
kα!

=
∑
V∈VI

∏
γ∈∆∗\VI

tγ
tγ −

∑
β∈VI

tβ⟨γ∨, µV
β ⟩ − ⟨γ∨, µV

αi
⟩/x

× 1

|Q∨/L(V∨)|
∑

q∈Q∨/L(V∨)

y{⟨q,µ
V
αi

⟩}
∏
γ∈VI

tγ exp(tγ{q}V,γ)
etγ − 1

. (6.16)

7 A Remarkable Theorem

It is natural that from functional relations we obtain value relations; we have only to sub-

stitute integers into variables. However it is remarkable that the converse holds, that is,

the generating function for I = ∅ knows “everything.” The following theorem tells that

F (tI ,y, λ; I;∆) for general I can be deduced from the case I = ∅.

Theorem 10 (Remarkable Theorem). Let I ⊂ {1, . . . , r}. For λ ∈ PI++, we have

F (tI ,y, λ; I;∆) = Res
tα=2π

√
−1⟨α∨,λ⟩

α∈∆I+

( ∏
α∈∆I+

1

tα

)
F (t,y;∆). (7.1)

8 Poincaré Polynomials and Special Zeta-Values

For k = (kα)α∈∆+ ∈ (Z≥1)
|∆+| satisfying w−1k = k for all w ∈ W I , the left-hand side of

(5.1) is∑
w∈W I

( ∏
α∈∆+∩w∆−

(−1)kα
)
ζr(w

−1k,0;∆) =
( ∑
w∈W I

∏
α∈∆+∩w∆−

(−1)kα
)
ζr(k,0;∆). (8.1)

From this expression, we notice that the coefficient of ζr(k,0;∆) coincides with the special

value W I(((−1)kα)α∈∆+) of the Poincaré polynomial for W I , where the Poincaré polynomials

due to Macdonald are defined as follows [15]: For indeterminates u = (uα)α∈∆+
and for

X ⊂W
X(u) =

∑
w∈X

∏
α∈∆+∩w∆−

uα. (8.2)

Since generally it is very difficult to calculate special values of these Poincaré polynomials,

we need their simple descriptions.

8.1 Poincaré polynomials

It is known [15] that if uα = u for all α ∈ ∆+,

W I(u) =
W (u)

WI(u)
, (8.3)
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with

W (u) =

r∏
i=1

udi − 1

u− 1
, WI(u) =

∏
i∈I

ud
′
i − 1

u− 1
, (8.4)

where di and d
′
i are the degrees of the Weyl groups W and WI , and these degrees are given

as in the following table.

Type {d1, . . . , dr}
Ar 2, 3, 4, . . . , r + 1

Br, Cr 2, 4, . . . , 2r

Dr 2, 4, . . . , 2r − 2, r

E6 2, 5, 6, 8, 9, 12

Type {d1, . . . , dr}
E7 2, 6, 8, 10, 12, 14, 18

E8 2, 8, 12, 14, 18, 20, 24, 30

F4 2, 6, 8, 12

G2 2, 6

From these facts, we see that if uα = u for all α ∈ ∆+,

W I(u) =
∑
w∈W I

∏
α∈∆+∩w∆−

uα =

∏r
i=1(u

di − 1)/(u− 1)∏
i∈I(u

d′i − 1)/(u− 1)
. (8.5)

8.2 Case 1 (all even)

Consider the case uα = (−1)kα = 1 for all α ∈ ∆+. Then by l’Hôpital’s rule, we obtain

W I(1) = |W I | =
∏r
i=1 di∏
i∈I d

′
i

∈ Z≥1. (8.6)

Example 8 (A2 with I = {2}). In this case, ∆ is of type A2 and hence d1 = 2, d2 = 3 and

∆I is of type A1 and hence d′1 = 2. Put sij = kij = 2m (even). Then the left-hand side of

(5.1) is directly calculated as

1 · ζ2(k12, s23, k13;A2) + (−1)k12ζ2(k12, k13, s23;A2) + (−1)k12+k13ζ2(s23, k13, k12;A2)

= (1 + (−1)k12 + (−1)k12+k13)ζ2(2m, 2m, 2m;A2)

= 3 · ζ2(2m, 2m, 2m;A2).

(8.7)

On the other hand this coefficient is calculated via Poincaré polynomials as

W I(1) =
d1d2
d′1

= 3. (8.8)

8.3 Case 2 (all odd)

Consider the case uα = (−1)kα = −1 for all α ∈ ∆+. Let K = {i | 1 ≤ i ≤ r, di ∈ 2Z},
KI = {i | i ∈ I, d′i ∈ 2Z}. Then

W I(−1) =


∏
i∈K di∏
i∈KI

d′i
∈ Z≥1 (|K| = |KI |)

0 (|K| ̸= |KI |).
(8.9)
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The following is a table of several examples where W I(−1) survives.

Type of ∆ Type of ∆I W I(−1)

A2m A2m−1 2 · 4 · · · 2m/2 · 4 · · · 2m = 1

A3 A2
1 2 · 4/2 · 2 = 2

D2m+1 D2m 2 · 4 · · · 4m/2 · 4 · · · (4m− 2) · 2m = 2

E6 D4 2 · 6 · 8 · 12/2 · 4 · 6 · 4 = 6

Example 9 (A2 with I = {2}). In this case, ∆ is of type A2 and ∆I is of type A1 as in the

previous example. Put sij = kij = 2n + 1 (odd). Then the left-hand side of (5.1) is directly

calculated as

1 · ζ2(k12, s23, k13;A2) + (−1)k12ζ2(k12, k13, s23;A2) + (−1)k12+k13ζ2(s23, k13, k12;A2)

= (1 + (−1)k12 + (−1)k12+k13)ζ2(2m, 2m, 2m;A2)

= 1 · ζ2(2m, 2m, 2m;A2).

(8.10)

On the other hand this coefficient is obtained from the above table as

W I(−1) = 1. (8.11)

8.4 Case 3 (Mixture)

Let ∆1 be the set of all long roots and ∆2, that of all short roots. Assume kα are odd for

α ∈ ∆1 and kβ are even for β ∈ ∆2, and hence uα = −1 for α ∈ ∆1 and uβ = 1 for β ∈ ∆2.

Lemma 11. Let u = (u, 1). Then we have

W I(u) =
W (u, 1)

WI(u, 1)
=

|WJ |W (∆1)(u)

|WI∩J |W (∆1 ∩∆I)(u)
. (8.12)

The following is a table of some examples, where W I(−1, 1) survives.

Type of ∆ Type of ∆I W I(−1, 1)

B2k+1 B2k 2 · 2 · 4 · · · 4k/2 · 2 · 4 · · · (4k − 2) · 2k = 2

C2k+1 C2k 2 · 2 · 4 · · · 4k/2 · 2 · 4 · · · (4k − 2) · 2k = 2

G2 A1 2 · 2/2 = 2

Example 10. Let ∆ be of type G2, and ∆I be of type A1. Let p = u = v be even and

s = q = r, odd. Then the left-hand side of (5.1) is directly calculated as

ζ2(p, s, q, r, u, v;G2) + (−1)pζ2(p, q, s, r, v, u;G2) + (−1)p+qζ2(v, q, r, s, p, u;G2)

+ (−1)p+q+vζ2(v, r, q, s, u, p;G2) + (−1)p+q+r+vζ2(u, r, s, q, v, p;G2)

+ (−1)p+q+r+u+vζ2(u, s, r, q, p, v;G2)

= 2ζ2(p, q, q, q, p, p;G2).

(8.13)
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On the other hand this coefficient is obtained from the above table as

W I(−1, 1) = 2. (8.14)

This recovers the result in [13].
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