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1 Introduction

Witten zeta-functions were introduced as partition functions of quantum gauge theories and

are expressed as
1

Cw(s;G) =) dm o)’

¥

(1.1)

where 1 runs over all finite dimensional irreducible representations of a connected compact
semisimple Lie group G [20,21]. Some of these zeta-functions are explicitly given as the

following multiple Dirichlet series:
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m=1
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mzz mens(m +n)*’ (1.3)
oo 65
mEn::l mens(m +n)*(m+2n)*’ (1.4)

In [2-6,8-10, 13] we consider multivariable analog of the above zeta-functions and call them

zeta-functions of root systems and studied their special values at integers and established value



relations among them. For example, (1.3) is generalized as

- 1
Ca(s12, 823, S13; A2) = Zl A m ) (1.5)
and a special value is given as
1 1 (27T,L')2+2+2 ’7T6
2,2,2:4y) = —(—1)3 = , 1.6
Gl 2) =5 50 20 2835 (1.6)

where ﬁ is given by multiple analog of Bernoulli numbers. Then the next question arises nat-

urally: What about functional relations? In the case of Euler-Zagier multiple zeta-functions,

only harmonic products are known as functional relations on the whole space: For s1,s5 € C,
Cez,2(51,52) + CEz,2(52,51) = ((51 + 82) — ((51)C(52). (1.7)

If we admit the restriction of the domain, we also have another type of functional relation [7,16].
As for the multiple zeta-functions of root systems, it is known that there are some functional

relations. One of such relations is given in [5,17,19]. For kj2, k13 € N and s23 € C,

Co(kiz, 823, k135 Ag) + (—=1)F12¢(kyo, ki3, s23; Ag) + (—1)F127713¢5 (503, K13, k123 Ag).

[k12/2] .
kio+kizs—1—-2 ) )
=2 E (*1)]612 ( - o ]Q)C(2J2)C(k12 + k13 + s23 — 2j2)

= ki —1 (1.8)
ki /2 .
+2 {J'SZ‘Z:O](—U]C13 (kl2 i :iz _ i - 2]3>C(2j3)C(/€12 + k13 + s23 — 2j3).
In particular, for k15 = k13 = s93 = 3, we have
(1—=1+1)¢2(3,3,3; A2) = —40¢(0)¢(9) — 12¢(2)¢(7). (1.9)

Our main purpose is to generalize this formula, that is, we understand the left-hand side by a
group theoretic interpretation and the right-hand side by the Poincaré polynomials. For the
details, see the forthcoming paper [14].

2 Zeta-Functions of Root Systems
2.1 Root Systems

Let V be an r dimensional real vector space with inner product (-,-) and A C V be a root
system. Let o, be the reflection with respect to the hyperplane H, orthogonal to o € A and
W be the Weyl group, which is generated by all reflections o,. Let ¥ be the coroot of a,
which is equal to 2a/{a, ) and Ay be the set of all positive roots. Let {a1,...,a,} be the

fundamental roots of A, which consists of a basis such that « = cy1 + -+ - + ¢, € AL with



all ¢; > 0. Let P, = @ Z>1\; be the set of all strictly dominant weights, where {A1,..., A}

is a dual basis of {ay, ...

example [1].

Example 1. A, case:

,a,'}. For the geometric meaning of these symbols, see the following

AY
A

A

a1 + Qo

AY
A

«---e--

A

> (X1

Example 2. C5 case: oy Go: oY

2.2 Zeta-Functions of Root Systems

Definition 1 (Zeta-functions of root systems [3], multivariable Lerch analog). For a root

system A and for s = (54)aca, € ClA+! and y € V, define

Glyia)= Y o T ot 1)

AEP 4 a€A+

Example 3. We obtain the corresponding zeta-functions by formally replacing oy and a3y by

m and n appearing in positive coroots. For example, in the root systems of rank 2, we have

Co(s,y; A2) =

Ca(s,y;Ca) =

Ca(s,y;Go) =

o e27ri(my1+ny2)

Z S1 52( + )53 ) (22)
S — m-in m n

> e27ri(my1+ny2)

5 , 23
= m*int2 (m o+ n)s (m + 2n)s

oo e27ri(my1 +nys2)

> S (249)
S~ m*int2 (m o+ n)%s (m + 2n)%4 (m + 3n)% (2m + 3n)%e



Here and hereafter if the root system A is of type X,, we write (.(s,y; X,) instead of
¢-(s,y; A) for short.

3 Special Zeta-Values (Review)

We extend s = (54)aca, 10 (Sa)aca by 5o = 5_ and define (ws), = s,-1,. Then we have

the following.

Theorem 1 (value relations [3,5]). Fors =k = (kq)aca, € Zlﬁf‘, we have

ST oot tenyia) = 02 pay ) T S0 @

weW acA L NwA_ aEAL

where P(k,y; A) is a multiple periodic Bernoulli function, which will be defined below.

Theorem 2 (special values [3,5]). For k = (ka)aca, € (2Z>1)!2+| satisfying w™'k =k for
allwe W,

(—1)lA+] (2mi)ke > ko
r(k,0;A) = ——"—P(k,0; A || «es . 2
aco4
Example 4.
 —11(2mi)?  w?
@=%5a %
- 1

<2((274)4>2)70;C2): Z
m,n=1
(-1)* 53 2mi)2\ 2 [ (2mi)*\° 53 1
— = ™.
2221 1513512000 \ 2! A1 6810804000

m2n(m + n)4(m + 2n)? (3.3)

4 Multiple Periodic Bernoulli Functions (Review)

Let 7 be the set of all bases V. .C A, and V* = {,ug}ﬁev be the dual basis of VV =
{BY}sev. Let Q¥ = @,_, Zay be the coroot lattice and L(VY) = @4y Z6Y. Note that
QY /L(VV)| < co. Fix a certain ¢ € V and define a multiple generalization of the fractional

part of real numbers as

_ D)} (¢, 1Y) > 0),
v {1—{—<y,ug>} (6.} < 0) -y



Definition 2 (generating functions [3,5]). For t = (ta)aeca.

Fit,y; A Z(Ht— . )

VeY yEAL\V Y ZBEVt,8<’Y :U’ﬁ>

(4.2)

1 > (H tgexp(tply + a}v, 5))

>< F
\% \% tg _
|Q /L(V )‘ qu\//L(V\/) ﬂev es 1

Definition 3 (multiple periodic Bernoulli functions [3,5]).
t
keZ'A+I €A

Remark. The A; case reduces to the classical generating function:

tet{v} e tk
Flty) = =3 Bllyh) . (14)
k=0 '
5 Functional Relations
Let I be a subset of {1,...,r}. We will see that this determines which variables are complex.

Let A be the subroot system of A with the fundamental roots {«; }icr and W/ be the minimal
coset representatives of W/W; with the Weyl group Wy of Ay, that is, W = W; W/,

Theorem 3 (functional relations). Fors = (sq)aca, with s € C (€ Ary) and sq = ko €
Lo (€ Ay \ Ary), we have

SO I 0%)e s wy:a)

weW! a€AiNwA_

:(1)|A+\A1+|< I (2Zi)'k“) Z(

a€AL\Ar4 *r AEP 4

11 W)P(k,y, XA, (5.1)

OCEAI+
where P(k,y, A\; I; A) is a multiple periodic Bernoulli function associated with I, which will be
defined below.

It should be noted that generally, the right-hand side consists of sum of several zeta-functions

of lower rank.

Example 5. In the root system of type As, we choose I = {2}, which we express as the

o % (5.2)

following diagram



where the circled node belongs to I. Then we have

Co(k1a, S23, k13; Ag) + (—1)%12 o (Kya, ks, s23; Ag) + (—1)2 7R3y (503, ki3, k123 A2)
k12 k13
_ (_1)2<(2m) (27i) >

k12! k13! (5.3)
=1 bo by b;
x Z ms23 (mk12+k13 + mkiz2t+kiz—2 Tt mkizt+kiz—25 |’
m=1
where j = max{[k12/2], [k13/2]} and by, ...,b; are certain real numbers. It should be noted

that the right-hand side consists of sum of several Riemann zeta-functions.

To define a multiple periodic Bernoulli function associated with I, we need some definitions.
Let 77 be the set of all bases of the form V = V; U {a; | i € I} with Vi = {y1,...,7} C
AL\ Art and py+ be the projection defined by

pvi)=v—=>Y u¥(y",v) (5.4)
YEVT

forveV.

Then we obtain the following:

Theorem and Definition 4 (generating function). For t; = (ta)aca,\a,, and X € Pr,

ty
F(tr,y, \I;A) = Z( H ZBEV t(yY MB>—27T\/7< 7PVL( )>>

vevr 7€A+\A[+UV[

! > exp(2rV -1y + q,pv,L(/\)))( I1 tgexp(tply + ‘J}V,B)>

Xi
\Y \Y tg _
’Q /L(V )| qEQV/L(VV) 5€V1 e 1
tha
= > PhyxLA) ] ol
keN‘A+\AI+| a€A+\A1+

(5.5)

In particular, if I = (), F(t;,y, \; I; A) reduces to the generating function for value relations:

F(ty,y, A 0;A) = F(t,y; A Z( H . V>>

Vey yEAL\V 'Y Zﬁevtﬁ<7 Mg

1 tgexp(tply + q}
LV 2 (1T == Vﬁ)

qEQV/L(VY) BeV
(5.6)

Remark. In the proof of this theorem, we use the results in [12].



6 Examples
6.1 A, Case
We use the following realization of the root system of type A,:
Ar={ei—ej|1<i<j<r+1}cR*H ((ei,ej) = 0ij). (6.1)

Then the zeta-function of type A, is expressed as

e >0 eXp(QW\/—lz i Tmiyi)
G((sijhr<icicr Wilicicr Ar) = 3 =0 > -

o= Thcicjcra(mi+ -+ mjq)®s’

(6.2)

m1=1
We choose I = {2,...,r} and I¢ = {1} as in the following Dynkin diagram.
o C” < O‘o> (6.3)

Then we have the following theorem:

Theorem 5 (generating function). Put te, ., =t; for 2 <i <r+ 1.

F((ti)2<i<r+1, (Yj)1<i<m (Mi)a<i<r; {25+, 7} Ay)

r+15—1 r+1
_]2221_[275—75 + 21/~ ( o my 1)1111 —om/—1 ( )
j—1 T
t; exp(t;1y1
X eXp<27T\/ -1 <Z mi(yi - y1) + Z m1y1)> R A etj(i{l }) .
=2 =7
(6.4)
Theorem 6 (multiple periodic Bernoulli function).
F((ti)2<i<rs1, (5)1<i<r (Mi)2<i<r; {2, 7} Ar)
t’2f2 .. .tkr+11
= Z P((ki)2<i<r+1, (Yj)1<j<rs (Mi)o<i<ri {2, .., h Ar)ﬁ, (6.5)
Kozsoe ks 120 2 Rl
IR |
where
P((ki)2<i<ri1, Wi)1<j<r, (Mi)2<i<r; 42, ..,7} Ar)
r+1 r+1 T
= ky!- T+1'Z<H Ok, 7&0) exp<27r\/ (Zml Z—y1)+zmiyi))
Jj=2 =2 =j
7 (6.6)
Blj {y1}) ki—1 ki+1l;—1 1 kitl;
X( 2 ! Il v I (2 V-1 ) )
Loyl 120 It a<i<rl : TV A
lot++lrp1=k; i#]



with
— m; + -+ myq (1 <y)
Y —(mj—i—---—i—mi_l) (Z>])

Theorem 7. For (s;;j)1<i<j<r+1 With s1; =ki; (2 <j <r+1), we have

r J
Z(H(—l)kl’i+l)Cr((3(1---j+1)pq)1§p<q§7‘+17 (y2 Y- Yi+1 — Y, Y41, - 7y7”); AT)
j=0 i=1

r+1

— _Z Z (_1)k1,2+ +Ek1 - 1+lj41+ +lr+1(27r /_1)53 : X
=2

la,eslrg1>0 J
lot-+lrp1=k1,;

X H < 1, 3 )Cr—l((qu+5p<j5qj(kl,p+lp) +5p:j5q>j(k1,q +lq))2§p<q§7‘+17
2<i<r+1 v
i#]
(y2 — Y- Y1 — Y1, Y5, - - 7yT);AT—1)-
(6.8)

Remark. Tt should be noted that this is a special case. Generally, (. (s,y; X,)’s are not nec-
essarily described in terms of (,—1(s,y; X,—1). It depends on the pair (X, I). We need more

general multiple zeta-functions, which may not be classified as zeta-functions of root systems.

Remark. Other special cases are (B,,{2,...,7}), (Cr,{2,...,7}).

Example 6. Set r =2, (y1,y2) = (0,0). For so3 € C,

Colkiz, 523, k135 A2) + (—1)F12 o (Kyo, ki, 5235 Ag) + (—1)F127713 ¢y (893, k13, k12; A2)

[k12/2] .
kio+kiz—1—2 . .
=2 Z G < " k:13 1 j2) C(272)C (k12 + k13 + s23 — 2j2)
G2=0 13 (6.9)
[k13/2] .
kio+kizs—1-—2 . )
+2 Z (—1)he < . kij 1 ]3> ((273)C (k12 + k13 + s23 — 273).
j3=0

Example 7. Set r = 3, (y1,¥2,y3) = (0,0,0). For (sa3,524,534) € C3,

C3(K1a, k13, k14, 523, 524, S345 Az) + (—1)"127K13C5 (593, k1o, S04, k13, 534, k145 A3)

+ (=1)F1283(ka, s23, 594, k13, k14, 8345 Ag) + (—1)P2tRstRu (500 504 K1, 534, k13, k145 A3)

[k12/2]
ki +13 — 1\ (k1a + 14— 1
o (P ()
]éz=:0 13;420 lg l4

I3+lg=k12—2j2

X ((2j2)C2(s23 + k13 + I3, S24 + k14 + 14, 345 A2)

+2 > )T (—keth (k” 252 B 1) (k” Tl 1) (6.10)

j3=0 12,140 4
l2+l4:k13—2j3

X ((273)C2(s23 + k12 + l2, S24, S34 + k14 + 145 A2)

8



k14/2]

[
kio +1a =1\ (ki3 +13—1
kio+kis 12 2 13 3
B2 b DG

ja=0 lg.lg>0 2
lag+lz=k14—2j4

X ((244)C2(523, 524 + k12 + lo, s34 + k13 + I35 A2).

6.2 Various Expressions

In particular, if ]Clg = I{ilg = k14 = S§93 = S94 = 834 = 2,

4C3(27 27 27 27 21 27 A3) = 2C(2){2C2(47 41 27 AQ) + C2(47 27 47 AQ)}
—62(6,4,2; Az) — 6¢2(6,2,4; A2) — 8(2(5,5,2; A) (6.11)
+ 4C2(5, 2, 5, A2) - 6{2(4, 6, 2, Ag)

On the other hand, we obtained already in [2, Eq. (4.28)]

4C3<27 27 27 27 27 27 A3) = 8C(2) {C2 (4a 47 27 AZ) + C2(3> 57 2a A2)}

6.12
- 12{2(6,4,27142) + 12(2(5,5,27142) - 6C2(4,6,2,A2) ( )

Remark. These two expressions are transformed into each other by use of partial fraction

decompositions.

Remark. (Open Problem) However in general A, cases, we have two different expressions of
the right-hand side and we do not know whether these two expressions are transformed into
each other by use of partial fraction decompositions. Thus these expressions may give new

value relations.

6.3 B, Case

Theorem 8 (generating function for B, case with I¢ = {1}). We use the following realization:
Ay ={e;tej|1<i<j<riu{e; |1<j<r} (6.13)

Put te,4e, =t4i for2 <i<r andt. =1t;.

F(t1, (txi)o<i<r, (Yj)1<j<r, (Mi)2<i<ri {2,...,7}; By)
i t_;

d t_
72 H t_i—t_j+27r\/—1(mi+---+mj_1) H t -—t_j—27r\/—1(m]-+---+mi_1)

j=22<i<j j<igr 70

y H by
Loty —ty—2m/=1(mi + - Fmy_ +2(my + -+ mpy) +my)
. by
tpi —t—j = 2m/=1(mj + -+ mi—1 +2(m; + -+ mp_1) +my)
X b
tl — 2t_j — 271'\/—71(2(771] + -+ mr_1> + mr)

9



X exp (27“/_71(21 mi(ys — y1) + i mzyl)) l_j exp(.tfj{%})

et-i —1
r -
+
;2y<‘7 t+] +27Tv (m’b +m]_1+2(m,]++mr—l)+mr>
[
<11 —
j<i<r T t+] +2m (m] +mi—1 + Q(mz + -+ mr—l) + mr)
t—H t_t,_z
X
2£[<j ty; — —27T\/ (ml '+mj_1) j<z]:£r tyi —t+j +2W\/j1(mj —|—~~-—|—mi_1)
51

X
t1—2t+j+27ﬁ/—1(2< '—l—---—i—mr 1)—|—mr)

xexp(2wﬁ(§mi( Vi — U1 +Zm2 i — 2y1) + ma(y r_y1)>>t+jexp(t+j{y1})

et+i — 1

Lz‘
i H _t1+7T\/7( ( '+mr71)+mr)

ti
X
H tyi —te— 7/ =1(2(m; +--- +mp_1) +my)

2<i<lr

))) trexp(ti{3y1})

etr — 1

X %(exp(Qwr(Z m;(y; )+ m(yr —

1
291

+exp (%F(Z mi(yi — (y1 + 1)) + my (yr — %(yl + 1)))> e exp(t;t{lé_(yll i 1)}))

Note that by expanding this expression, we see that we obtain functional relations among

¢-(+; By) and (,—1(+; Br—1) similar to those in the case of type A, obtained in Theorem 7.

6.4 X, with |I| =1 Case

In the case |I| = 1, we will see that the sum of some (,(-; X,) is expressed in terms of Lerch

zeta-functions. Let ¢(u, s) be the Lerch zeta-function defined by

> e27r\/—71un
du,8) =Y — (6.14)
n=1

Theorem 9. Let so = ko € Z>o for o € Ay \{o;} and s, € C. Let |k| = ZQGA+\{%} kq.
Let X ={v={{q.n¥)} | VE€ V1,4 € QV/L(VY)} C Q.

Z( 11 (—1)"‘““)<r(w‘1s,o;A)

weW!l a€A 1
k|

— (_1)|A+|1< H (QWF > Z 2 2:\1;”]7 V,Sa; +7), (6.15)

aeA \{a;} veX,; j= 0

10



where by,; € Q is given by
k|

> Y Y [[ =3 11 5

— v o,V _ v .,V
kENgA*‘ veX; j=0 aEA* : Vet veA\V; Y ZﬂEVI tﬂ<7 ' Mg > <7 7:ua7;>/x

1 t t
Y e T 1ot dabva) g4

X e —
v v t, _
|Q /L(V )’ qeEQV/L(VY) YEVT € 1

7 A Remarkable Theorem

It is natural that from functional relations we obtain value relations; we have only to sub-
stitute integers into variables. However it is remarkable that the converse holds, that is,
the generating function for I = () knows “everything.” The following theorem tells that

F(t;,y,\;I; A) for general I can be deduced from the case I = ().

Theorem 10 (Remarkable Theorem). Let I C {1,...,r}. For A\ € Py, we have

1

Fltr,y, \ [;A) = Res ( —)Ft, “A). 7.1

st = Re (] ) Reria) (r.1)
a€Ar4 I+

8 Poincaré Polynomials and Special Zeta-Values

For k = (ka)aca, € (Z>1)!+! satisfying w™'k = k for all w € W/, the left-hand side of
(5.1) is
> ( 11 (—1)’“°‘)Cr(w‘1k, 0;A) = ( > 11 (—1)ka)g(k,o;A). (8.1)
weWwl a€A+ﬂwA_ weW ! a6A+ﬂwA_

From this expression, we notice that the coefficient of (.(k,0;A) coincides with the special
value W (((—1)*=)qen, ) of the Poincaré polynomial for W7, where the Poincaré polynomials

due to Macdonald are defined as follows [15]: For indeterminates u = (uq)aea, and for

Xcw
Xw=> J[ (8.2)

weX a€A L NwWA_

Since generally it is very difficult to calculate special values of these Poincaré polynomials,

we need their simple descriptions.

8.1 Poincaré polynomials

It is known [15] that if u, = u for all & € A4,

W) = (8.3)



with

T

udi — 1 udi — 1
W =115 Wi =117 54

where d; and d; are the degrees of the Weyl groups W and Wy, and these degrees are given

as in the following table.

Type {d1,...,d} Type {d1,...,d}
A, | 234,41 E; 2,6,8,10,12, 14, 18
B,,C, 2.4,....2r Es | 2,8,12,14,18,20,24, 30
D, | 2,4,....2r—2.7r F, 2,6,8,12
Es 2.5,6,8,9,12 G 2,6

From these facts, we see that if u, = u for all @ € Ay,

WI(u) _ Z H Uy = H::l(udi - 1)/(“ — 1) ) (8.5)

weW!l a€ALNwA _ Hiel(udi - 1)/(“ - 1)

8.2 Case 1 (all even)

Consider the case u, = (—1)*« =1 for all @« € A ;. Then by 'Hopital’s rule, we obtain

" d;
wi) = |w'| = iy ds € Z>1. (8.6)
Hie] d; a

Example 8 (Ay with I = {2}). In this case, A is of type Ay and hence d; = 2,ds = 3 and
Ay is of type Ay and hence di = 2. Put s;; = k;; = 2m (even). Then the left-hand side of
(5.1) is directly calculated as

1 (o(ki2, 523, k1z; A2) + (—1)"2Co(kua, kus, s233 A2) + (—1)F12 1713 (5 (593, ki3, k123 As)
= (1+ (=1)F2 + (=1)F2tk13) 5 (2m, 2m, 2m; As) (8.7)
=3 (2(2m,2m,2m; As).

On the other hand this coefficient is calculated via Poincaré polynomials as

did
wi) = =27
1

=3, (8.8)

8.3 Case 2 (all odd)

Consider the case u, = (=1)k« = —1 foralla € A,. Let K = {i | 1 <i < r,d; € 2Z},
Ky={i|iel,d €2Z}. Then

HiEK d; _
WI=1) = epe, @, < 22t (KI=1KD (8.9
0 (K| # |K1).

12



The following is a table of several examples where W1 (—1) survives.

Type of A | Type of A; wWi(-1)
Ao Ao 2:4---2m/2-4---2m =1
As A2 2.4/2.2=2
Doyt Do, 2-4---4dm/2-4---(4m —2)-2m =2
FEg Dy 2:6-8-12/2-4-6-4=6

Example 9 (A; with I = {2}). In this case, A is of type Ay and Ay is of type A; as in the
previous example. Put s;; = k;; = 2n + 1 (odd). Then the left-hand side of (5.1) is directly

calculated as

1- Co(ki2, S23, k13; A2) + (—1)"2Co (Ko, ks, S23; Ao) 4+ (—1)12FK13 ¢ (593, ki3, ka5 Ag)
= (1+ (=1)F2 4+ (=1)"=2+F13)(5 (2m, 2m, 2m; As) (8.10)
=1-((2m,2m,2m; As).

On the other hand this coefficient is obtained from the above table as

wi(-1)=1. (8.11)

8.4 Case 3 (Mixture)

Let Ay be the set of all long roots and As, that of all short roots. Assume k, are odd for
a € Ay and kg are even for 8 € Ay, and hence u, = —1 for « € Ay and ug =1 for 5 € As.

Lemma 11. Let u= (u,1). Then we have

Wu1) W W(AL)(u)

Wi(u) = Wir(u, 1) [Wras[W(AL N AL (u)

(8.12)

The following is a table of some examples, where W’ (—1,1) survives.

Type of A | Type of A; wWi(-1,1)
Bojs1 Box, 2.2 4. Ak)2-2- 4 (dk —2) - 2k =2
Copin Cor, 224 4k/2-2- 4 (4k —2) - 2k =2
G A 2.2/2 =2

Example 10. Let A be of type Go, and A; be of type A;. Let p = u = v be even and
s =g =r, odd. Then the left-hand side of (5.1) is directly calculated as

Ca(p, s, 4,7, u,v;G2) + (=1)PCa(p, ¢, 5,7, 0,u; G2) + (=1)PT9C (v, g, 7, 5,p, u; Go)
+ (=PI (v, 7, q, 8,u, p; G2) + (=1)PTIT G (w7, s, q,v,p; Ga)
+ (—1)pratrtutee, (s v q,p, v; Ga)

=2G(p. ¢,4,9,p,p; G2).

(8.13)
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On the other hand this coefficient is obtained from the above table as
wi(-1,1) = 2. (8.14)

This recovers the result in [13].
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