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1 Introduction

In 1910s, Bohr initiated the investigation of value distribution of the Riemann zeta function

ζ(s) =
∞∑
n=1

1

ns
=
∏
p

(
1− 1

ps

)−1

for σ > 1,

where s = σ + it denotes a complex variable and the symbol p denotes a prime number as

usual. First he [2] showed that the set{
ζ(σ + it) ∈ C

∣∣ σ > 1, t ∈ R
}

is dense in the set C of all complex numbers. Later Bohr and Courant [3] showed that for any

fixed 1/2 < σ0 < 1 the set

{ζ(σ0 + it) ∈ C | t ∈ R}

is dense in C. In 1975, Voronin [13] extended this denseness result to the infinite dimensional

space, that is, the functional space and obtained the remarkable universality theorem. To

state it in modern form which was established by Bagchi [1], we define a probability measure

on R. Let µ be the Lebesgue measure on the set R of all real numbers. For T > 0 define

νT (· · · ) =
1

T
µ {τ ∈ [0, T ] : · · · } ,

where in place of dots we write some conditions satisfied by a real number τ .

Theorem 1 (Voronin, [13]). Let K be a compact subset in the strip
1

2
< σ < 1 with connected

complement and f(s) be a non-vanishing and continuous function on K which is analytic in

the interior of K. Then for any small positive number ε we have

lim inf
T→∞

νT

(
max
s∈K

|ζ(s+ iτ)− f(s)| < ε

)
> 0.

This theorem asserts roughly that any analytic function can be approximated uniformly

by suitable vertical translation of ζ(s).

These results have been developed into various directions by several mathematicians. Here

we will describe one of such derivative studies, discrete value distribution of zeta functions.
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The first result in this direction was obtained by Voronin [12]. He showed that for any fixed

δ > 0, 1
2 < σ0 ≤ 1 and N ∈ N, the set{

(ζ(σ0 + iδn), . . . , ζ(N−1)(σ0 + iδn)) ∈ CN
∣∣ n ∈ N

}
is dense in CN . This means that the multi-dimensional denseness result of the Riemann zeta

function holds for the arithmetic progression {δn |n ∈ N}. In 1980, Reich [11] established the

discrete universality theorem for Dedekind zeta functions with respect to arithmetic progres-

sions. Later, Dubickas and Laurinčikas [4] established the discrete universality theorem for

the Riemann zeta function with respect to the sequence {δnη |n ∈ N}, where η is a positive

real number with η < 1.

In the following, we treat only one sequence Γ of real numbers which is deeply related to

the Riemann zeta function ζ(s) itself. As usual, ρ = β + iγ denotes a non-trivial zero of ζ(s).

For x > 1, E. Landau [10] established the following formula.∑
ρ=β+iγ
0<γ≤T

xρ = − T

2π
Λ(x) +O(log T ), (1)

where Λ(x) is the extended von Mangoldt function

Λ(x) =

{
log p (x = pk, k ≥ 1),

0 (otherwise),

and the error term depends on x. Now we assume the Riemann hypothesis, which asserts

that

β =
1

2
(2)

for all non-trivial zeros ρ. Combining (1), (2) and the zero density estimate

N(T ) := ♯
{
ρ = β + iγ

∣∣ 0 < γ ≤ T
}
=

1

2π
T log T +O(T ),

we have
1

N(T )

∑
0<γ≤T

xiδγ −→ 0 as T → ∞,

for any x > 1 and a positive constant δ. This implies that the set Γ of all positive imaginary

parts of non-trivial zeros of the Riemann zeta function is uniformly distributed modulo 1.

From this, we could show that the set{
ζ(σ + iδγ) ∈ C

∣∣ σ > 1, γ ∈ Γ
}

is dense in C for any positive number δ. Recently, Garunkštis and Laurinčikas [6] obtained

the next result
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Theorem 2 (Garunkštis and Laurinčikas [6]). Suppose that the Riemann hypothesis holds.

Let 0 < γ1 ≤ γ2 ≤ · · · be the positive imaginary parts of non-trivial zeros of ζ(s). Let a set

K and a function f(s) be as in Theorem 1. Then for any small positive number ε we have

lim inf
N→∞

1

N + 1
♯

{
1 ≤ k ≤ N

∣∣∣ max
s∈K

|ζ(s+ iγk)− f(s)| < ε

}
> 0.

They proved this theorem using the explicit version of Landau’s formula (1) due to Gonek

[8] and [9]. From more stronger formula due to Fujii [5], the author established the following

joint discrete universality theorem for Dirichlet L-functions.

Theorem 3 (Mishou, Palanga Conference in 2016, Lithuania). Assume that the Riemann

hypothesis holds. Let δ be a positive constant satisfying δ ≤ 1. Let χ1, · · · , χr be pairwise

non-equivalent Dirichlet characters. For each 1 ≤ j ≤ r, let Kj be a compact subset in
1
2 < σ < 1 with connected complement and fj(s) be a non-vanishing and continuous function

on Kj which is analytic in the interior of Kj. Then for any small positive number ε we have

lim inf
T→∞

1

N(T )
♯

{
0 < γ ≤ T

∣∣∣ max
1≤j≤r

max
s∈Kj

|L(s+ iδγ, χj)− fj(s)| < ε

}
> 0.

For a real number α with 0 < α ≤ 1, the Huriwitz zeta function is defined by

ζ(s, α) =

∞∑
m=0

1

(m+ α)s

for σ > 1. Now we state our main result, which is the discrete universality theorem for

Hurwitz zeta functions.

Theorem 4. Assume that the Riemann hypothesis holds. Let δ be a positive constant satis-

fying δ ≤ 1. Let 0 < α < 1 be a real number which is rational without 1/2 or transcendental.

Let K be a compact subset in 1
2 < σ < 1 with connected complement and f(s) be a continuous

function on K which is analytic in the interior of K. Then for any small positive number ε

we have

lim inf
T→∞

1

N(T )
♯

{
0 < γ ≤ T

∣∣∣ max
s∈K

|ζ(s+ iδγ, α)− f(s)| < ε

}
> 0.

2 Outline of the proof of Theorem 4

In this section we sketch the proof of Theorem 4. First we consider the case that α is a

rational number a
q without 1/2. Then the Hurwitz zeta function is represented as a sum of

Dirichlet L-functions

ζ(s,
a

q
) =

qs

ϕ(q)

∑
χ (mod q)

χ(a)L(s, χ).

From this expression and Theorem 3 we could easily obtain the discrete universality for ζ(s, aq ).

3



Next we consider the case that α is a real transcendental number. In this case, the set of

Dirichlet exponents {log(m+ α) | m ≥ 0} of ζ(s, α) is linearly independent over Q. Also, as

we stated in §1, the set

Γ = {positive imaginary parts of non-trivial zeros of ζ(s)}

is uniformly distributed modulo 1. From these two properties, we have the following lemma.

Lemma 1. Let δ be a positive real number. For any N ∈ N, the set{(
−δ logα

2π
γ,−δ log(1 + α)

2π
γ, . . . ,−δ log(N + α)

2π
γ

)
∈ RN+1

∣∣∣ γ ∈ Γ

}
is uniformly distributed in [0, 1]N+1 modulo 1. Namely, for T > 0, 0 < η < 1, a sequence

{θm} of real numbers with 0 ≤ θm < 1 define a subset AN,η(T ) of Γ by

AN,η(T ) =

{
0 < γ < T

∣∣∣ ∥∥∥∥−δ log(m+ α)

2π
γ − θm

∥∥∥∥ ≤ η (0 ≤ m ≤ N)

}
,

where ∥x∥ = minn∈Z |x− n|. Then we have

♯AN,η(T )

N(T )
= (2η)N+1 (T → ∞). (3)

Here we remark that Lemma 1 holds for all positive δ. Next we prepare the denseness

lemma obtained by Gonek [7].

Lemma 2. Let a set K and a function f(s) be as in Theorem 4. For any ε > 0, there exists

a sequence {θm} with 0 ≤ θm < 1 and N0 > 0 such that if N > N0 we have

max
s∈K

∣∣∣∣∣∣f(s)−
∑
m≤N

e(θm)

(m+ α)s

∣∣∣∣∣∣ < ε,

where e(x) = e2πix.

Lemma 3. Assume that δ be a positive real number with δ ≤ 1. For T > 0 and z > 0, define

a subset Bz(T ) of Γ by

Bz(T ) =

0 < γ < T

∣∣∣∣ max
s∈K

∣∣∣∣∣∣ζ(s+ iδγ, α)−
∑
m≤z

1

(m+ α)s+iδγ

∣∣∣∣∣∣ < ε

 . (4)

For any ε > 0 and any ε′ > 0, there exists z0 > 0 such that if z > z0 we have

lim
T→∞

♯Bz(T )

N(T )
> 1− ε′. (5)

This lemma implies that for almost all γ the attached Hurwitz zeta function ζ(s+ iδγ, α)

is uniformly approximated by truncated Dirichlet polynomials. To prove Lemma 3, we need

the following explict version of Landau formula due to Fujii [5].
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Lemma 4 (Fujii [5]). Assume that the Riemann hypothesis holds. For x > 1 and T > T0, we

have ∑
0<γ≤T

x
1
2
+iγ =− T

2π
Λ(x) +

√
x ·M(x, T )

+O(x log(2x)) +O

(
log xmin

(
x,

x

⟨x⟩

))
+O

(
x

√
log T

log log T

)

+O

(
x

1
2
+ 1

log log T · log(2x) · log T

log log T

)
+O (x log(2x) log log(3x)) ,

where ⟨x⟩ is the distance from x to the neartest prime power other than x itself and

M(x, T ) =
1

2π

∫ T

1
xit log

(
t

2π

)
dt.

To prove Lemma 3, we consider the second mean sum

I :=
∑

0<γ<T

∫∫
K

∣∣∣∣∣∣ζ(s+ iδγ, α)−
∑
m≤z

1

(m+ α)s+iδγ

∣∣∣∣∣∣
2

dσdt.

Applying the approximate functional equation of the Hurwitz zeta function and Lemma 4, we

have

I ≪ N(T )z1−2σ1+ε +N(T )T 1−2σ1+ε, (6)

where σ1 = mins∈K ℜs > 1
2 . This implies Lemma 3. Here we remark that to obtain estimate

(6), we need the restriction δ ≤ 1. If δ > 1, the error terms arise from Lemma 4 become too

large.

As in the proof of Lemma 3, we could obtain the next lemma.

Lemma 5. Suppose that δ be a positive real number with δ ≤ 1. Let K be a compact subset

of the strip 1
2 < σ < 1. Let σ1 > 1

2 satisfying K ⊂ {s ∈ C | σ > σ1}. Let ε > 0. Then

there exists a large positive integer N1 = N1(K,σ1, ε) depending on K,σ1 and ε satisfying the

following:

Fix any positive integer N > N1. For any T > 0, 0 < η < 1 and a sequence {θm} of real

numbers with 0 ≤ θm < 1, define a subset AN,η(T ) of Γ as in Lemma 1. For any z > N define

a subset CN,η(T ) of AN,η(T ) by

CN,η(T ) :=

γ ∈ AN,η(T )

∣∣∣∣ max
s∈K

∣∣∣∣∣∣
∑

N<m≤z

1

(m+ α)s+iδγ

∣∣∣∣∣∣≪K N1−2σ1 .

 .

Then for all T sufficiently large we have

♯CN,η(T )

N(T )
>

1

2
(2η)N+1. (7)
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Now we prove Theorem 4. Let a set K and a function f(s) be as in Theorem 4. Let

ε > 0. Lemma 2 implies that there exist a large positive integer N0 and a sequence {θm} of

real numbers with 0 ≤ θm ≤ 1 such that for any N > N0 we have

max
s∈K

∣∣∣∣∣∣f(s)−
∑
m≤N

e(θm)

(m+ α)s

∣∣∣∣∣∣ < ε. (8)

Now we fix N > max{N0, N1} satisfying

CKN1−2σ1 < ε,

where CK is the O-constant in Lemma 5. By the definition of the subset AN,η(T ) in Lemma

1 and the continuity of Dirichlet polynomials, we can choose a sufficiently small positive real

number η such that

max
s∈K

∣∣∣∣∣∣
∑
m≤N

e(θm)

(m+ α)s
−
∑
m≤N

1

(m+ α)s+iδγ

∣∣∣∣∣∣ < ε (9)

holds for all γ ∈ AN,η(T ). In Lemma 3, we take ε′ = 1
4(2η)

N+1 and fix z > max{z0, N}. From
(5) and (7), we have,

♯(Bz(T ) ∩ CN,η(T ))

N(T )
>

1

2
(2η)N+1 − 1

4
(2η)N+1 =

1

4
(2η)N+1

This means that Bz(T ) ∩ CN,η(T ) has a positive lower density. For all γ ∈ Bz(T ) ∩ CN,η(T ),

we have (9), (4) in Lemma 3 and

max
s∈K

∣∣∣∣∣∣
∑

N<m≤z

1

(m+ α)s+iδγ

∣∣∣∣∣∣≪K N1−2σ1 < ε.

Combining these estimates and (8), we obtain Theorem 4.

3 A Conjecture

In Theorem 3 and Theorem 4, the restriction

δ ≤ 1

arises from the technical reason. On the other hand, as we stated in §1, the denseness result

of the set {
ζ(σ + iδγ) ∈ C

∣∣ σ > 1, γ ∈ Γ
}

holds for any positive δ. Therefore it is expected that these universality theorems also hold

for δ > 1. Especially, if the discrete universality theorem of ζ(s) holds for δ = 2, we have an

interesting result on value-distribution of multiple zeta functions.
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Let u and v be complex variables. The Euler - Zagier double sum is defined by

Z2(u, v) =
∞∑

m=1

∞∑
n=1

1

mu(m+ n)v

for ℜu > 1 and ℜv > 1 and is meromorphically continued to the whole complex space C2. The

function Z2(u, v) is one of the most classical multiple zeta functions. The study of multiple

zeta functions have been extensively developed by many mathematicians on zeta-values and

analytic continuation. Meanwhile, there are a few results on value distribution of the multiple

zeta functions. By the definition of ζ(s) and ζ2(u, v), we have the relation

ζ(u)ζ(v) = ζ(u+ v) + Z2(u, v) + Z2(v, u).

Now we assume that the Riemann hypothesis holds. If we put u = v = ρ = 1
2 + iγ, we have

Z2(ρ, ρ) = −1

2
ζ(1 + 2γi).

This relation predicts the next conjecture

Conjecture 1. The set {
Zeta2(ρ, ρ) ∈ C

∣∣ ζ(ρ) = 0
}

is dense in C.
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