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Abstract
Two zeta-functions associated with the classical Poincaré series attached to mod-

ular group are introduced. Integral representations, transformation formulas and
some functional properties are given. As an application, we obtain two new proofs
of the Fourier series expansion of the Poincaré series attached toSL(2,Z).
This manuscript is a summarized version of [No1] and the forthcoming paper [No2].

1 Exponential type generating functions

Let H = {z∈ C | Im(z) > 0} be the complex upper half plane. LetΓ (s) be the Gamma
function,F(α;γ;z) be Kummer’s confluent hypergeometric function of the first kind (cf.
[Er1, 6.5.(1)]),Jν(z) be the Bessel function of the first kind, andIν(z) andKν(z) be mod-
ified Bessel functions (cf. [Er2, 7.2.1 (2), 7.2.2. (12), (13)]). Throughout this manuscript,
ζ (s) andζ (s,α) denote the Riemann and the Hurwitz zeta-function respectively,

∫ (0+)
−∞

denotes integration over a Hankel contour, starting at negative infinity on the real axis,
encircling the origin with a small radius in the positive direction, and returning to the
starting point. We write

∫ (0+)

∞eiθ an integration taken along a rotated Hankel contour, start-

ing at∞ei(−2π+θ), encircling the origin in the positive direction, and returning to the point
∞eiθ .

First, we introduce following Dirichlet series:

ζexp.II (s;λ ;z) :=
∞

∑
n=0

exp(−2π iλ/(n+z))
(n+z)s . (1)
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Here, letz∈ C \R, Re(2π iλ/z) > 0 and 0< Re(z) ≤ 1 in (1). Then the power series
expansion involving the Hurwitz zeta-function

ζexp.II (s;λ ;z) =
∞

∑
m=0

(−2π iλ )m

m!
ζ (s+m,z) (2)

holds fors∈ C\{1,0,−1,−2, ...}, and we have

Theorem 1 ([No2]) Let z∈ H, 0< Re(z) ≤ 1 andλ > 0, and assumeπ < θ < 3π/2.
Then an integral representation

ζexp.II (s;λ ;z) = (2π iλ )1−sΓ (s−1)+
(2π iλ )−s

π i

∫ (0+)

∞eiθ

u(s−1)/2ezu/(2π iλ )

1−eu/(2π iλ ) Ks−1(2
√

u)du

(3)
holds for s∈ C \ {1,0,−1,−2, . . .}, which provides a holomorphic continuation to the
whole s-plane except on s∈ {1,0,−1,−2, . . .}. Above integral representation gives the
functional relation

ζexp.II (s;λ ;z)+(−1)sζexp.II (s;−λ ;1−z)

= 2π ie−π is
∞

∑
n=1

(n/λ )(s−1)/2e2π iznIs−1(4π i
√

nλ ), (4)

for s∈ C\{1,0,−1,−2, . . .}.

2 J-Bessel zeta-function

Let θ > 0, ν ∈ C ands be a complex variable. Next, we defineJ-Bessel zeta-function of
orderν −1 as follows:

Jν−1(s;θ) :=
∞

∑
n=1

Jν−1(2
√

θn)

ns+ ν+1
2

. (5)

By the estimates of theJ-Bessel function, the Dirichlet series above converges absolutely
in the region Re(s)> 0 when Re(ν)> 1/2, and converges absolutely in the region Re(s)>
⌊3/2−Re(ν)⌋/2−1 when Re(ν)≤ 1/2. For the specific case,ν is an integer,Jν−1(s;θ)
converges absolutely in the region Re(s)> (1−ν)/2.

Theorem 2 ([No1], Theorem 1.1)Letν ∈C andθ > 0. The J-Bessel zeta-function has
an integral representation

Jν−1(s;θ) =
θ s+ ν+1

2 Γ (−s)
2π iΓ (ν)

∫ (0+)

−∞

useθu

1−eθuF(−s;ν ;−u−1)du, (6)



which provides a meromorphic continuation to the whole s-plane. Further, the transfor-
mation formula

Jν−1(s;θ) =
θ

ν−1
2 Γ (−s)
Γ (ν)

∞

∑
n=−∞, n̸=0

(2π in)sF

(
−s;ν ;

−θ
2π in

)
(7)

holds forRe(s)<−1, and the power series expansion

Jν−1(s;θ) =
∞

∑
m=0

θ
ν−1

2

Γ (ν +m)m!
ζ (s+1−m)(−θ)m, (8)

holds for s∈ C \ {0,1,2, ...}. The J-Bessel zeta-function also satisfies the following re-
currence formula:

Jν−1(s;θ)+Jν+1(s−1;θ) =
ν√
θ

Jν(s;θ). (9)

Remark 1. The power series expressions (2) and (8) are one of the generalizations of
Ramanujan’s formula [Ra] (the binomial type power series):

ζ (s,1+x) =
∞

∑
m=0

Γ (s+m)

Γ (s)m!
ζ (s+m)(−x)m, (10)

for |x|< 1 ands∈C\{1}. An exponential type series was initially studied by Chowla and
Hawkins [CH], and Gauss’ hypergeometric type and Kummer’s confluent hypergeometric
type series were introduced by Katsurada [Kt]. For related results and generalizations of
Ramanujan’s formula (10), refer to [SC].
Remark 2. More general zeta functions twisted by hypergeometric or Bessel functions
are treated by Kaczorowski and Perelli [KP4]. They derived meromorphic continuations
of these zeta-functions via the properties of the nonlinear twists obtained in [KP1]–[KP3].

3 Relation to the Poincaŕe series

Let m∈ Z>0 andH = {z∈ C | Im(z) > 0} be the complex upper half-plane. We denote
γ(z) = (az+b)/(cz+d) for γ =

(
a b
c d

)
∈ SL2(Z), and use the notation e(z) = exp(2π iz).

Let k≥ 4 be an integer, and define them-th Poincaŕe seriesattached toSL2(Z) of weight
k by

Pk
m(z) := (−1)k ∑

{c,d}

e(mγ(z))
(cz+d)k . (11)

Here the summation is taken overγ =
(∗ ∗

c d

)
, a complete system of representation of{(∗ ∗

0 ∗
)
∈ SL2(Z)

}
\SL2(Z) ∼= {(c,d) ∈ Z2 | gcd(c,d) = 1, c > 0 or c = 0, d = 1}. The

functional relation ofζexp.II (s;λ ;z) or transformation formula ofJν−1(s;θ) induce the
following proposition which leads to the Fourier expansion ofPk

m(z).



Proposition 1 Let µ > 0. The equality

2π(−1)
k
2

∞

∑
n=1

(
n
µ

) k−1
2

Jk−1(4π
√

µn)e(nz) = (−1)k
∞

∑
n=−∞

e(−µ/(z+n))
(z+n)k (12)

holds for positive integer k.

Remark 3. It is easy to see the functional relation (4) is equivalent to (12). To show
(12) via the transformation formula (7) is rather complicated (see [No1, Proposition 4.1]
). As is well-known, the equality (12), from right side to left side, can be shown by using
Fourier transform. Our procedure in the proofs of Proposition 1 differs from these existing
methods.

By the definition ofPk
m(z), we see

Pk
m(z) = (−1)ke(mz)+(−1)k ∑

(c,d) ∈ Z2, c> 0
gcd(c,d) = 1

e(mγ(z))
(cz+d)k . (13)

According to ordinary steps, we rearrange thed-sum inton-sum with finited-sum modulo
c, and apply Proposition 1 with takingµ = m/c2 and replacingz by z+d/c. Thus, we
achieve the following;

Theorem 3 (Fourier series expansion of the Poincaré series)

Pk
m(z) = (−1)ke(mz)+(−1)

k
2 2π

∞

∑
n=1

( n
m

) k−1
2

∞

∑
c=1

1
c

Kc(m,n)Jk−1

(
4π
c

√
mn

)
e(nz).

Here, the Kloosterman sum is defined as follows:

Kc(m,n) = ∑
d modc

gcd(c,d) = 1

e

(
md̄+nd

c

)
, (d̄d≡ 1 modc).
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