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1 Introduction

In his famous address at the 5th International Congress of Mathematicians,
Landau [11] listed four problems in prime number theory, which are sometimes
called Landau’s problems. These problems are:

1. Does the function u2 + 1 represent infinitely many primes for integers u?

2. Does the equation m = p + p′ have for any even m > 2 a solution in
primes?

3. Does the equation 2 = p− p′ have infinitely many solutions in primes?

4. Does at least one prime exist between n2 and (n + 1)2 for any positive
integer n?

The present note is related to the first three problems from Landau’s list.
Landau’s third problem is well-known as the twin prime problem. Let

Ψ(X,h) =
∑
n≤X

Λ(n)Λ(n+ h), (1)

where h is a positive integer and Λ(n) is the von Mangoldt function. This
function Ψ(X,h) counts the number of twin prime pairs, i.e. prime pairs (p, p′)
satisfying the twin prime equation

p′ = p+ h, (2)

which slightly generalizes the twin prime problem. Although Landau confessed
that his problems seem unattackable at the state of science at his time, Hardy
and Littlewood introduced a new method, which is called now the circle method,
and gave some important attacks against problems on prime numbers. By
applying their method formally, Hardy and Littlewood found an hypothetical
asymptotic formula

Ψ(X,h) = S(h)X + (Error) (3)

for even h, where S(h) is the singular series for the twin prime problem defined
by

S(h) =
∏
p|h

(
1 +

1

p− 1

)∏
p∤h

(
1− 1

(p− 1)2

)
.

In this note, we call this type of hypothetical asymptotic formula the Hardy-
Littlewood asymptotic formula. Note that the Bateman-Horn conjecture [3] gives
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a much wider picture on the distribution of prime numbers. Since S(h) ≫ 1,
the Hardy-Littlewood asymptotic formula (3) gives a positive answer to the twin
prime problem. Unfortunately, any rigorous proof of (3) seems quite far from
our current state of science. However, some average behavior of Ψ(X,h) have
been obtained by many researchers. As for the twin prime problem, Mikawa
[13] or Perelli and Pintz [17] obtained the current best result:

Theorem A (Mikawa [13], Perelli and Pintz [17]). Let X,H,A ≥ 2, and ε > 0.
Assume

X1/3+ε ≤ H ≤ X.

Then we have
Ψ(X,h) = S(h)X +O(XL−A)

for all but ≪ HL−A even numbers h ∈ [1,H].

Since the original twin prime problem is the case h = 2, we are interested in
restricting h to some small neighborhood of h = 2. Namely, our goal is to obtain
the result under the situation “the larger X with the smaller h”. In this note,
we consider this kind of average results for the Hardy-Littlewood asymptotic
formulas.

We next consider Landau’s first problem. Let

Ψk(X,h) =
∑

nk≤X

Λ(nk + h), (4)

where k ≥ 2 is a positive integer. This function counts the number of pairs
(nk, p) satisfying the equation

p = nk + h, (5)

which generalizes Landau’s first problem. Note that if the polynomial Xk+h ∈
Q[X] is reducible, then the equation (5) has only a finite number of solutions.
Thus we introduce

Irrk =
{
h ∈ N

∣∣ Xk + h is irreducible over Q
}
.

As for this equation, the Hardy-Littlewood asymptotic formula is given by

Ψk(X,h) = Sk(h)X
1/k + (Error) (6)

for h ∈ Irrk, where the singular series Sk(h) is given by

Sk(h) =
∏
p

(
1− rk(h, p)− 1

p− 1

)
,

rk(h, p) =
∣∣{ x (mod p)

∣∣ xk + h ≡ 0 (mod p)
}∣∣ .

The average result for this problem is obtained recently by [1, 2, 8]. We note
that as for the “conjugate” equation

N = p+ nk,
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some results were obtained earlier by [14, 18, 19], and it seems straightforward
to apply these earlier work to the function Ψk(X,h) and give the same result
as in [2] or even better results than those of [1, 8]. We have to mention that
the interesting method used in [2] is completely different from the earlier work.
Namely, Baier and Zhao showed that Linnik’s dispersion method is sometimes
applicable to our problem, which is originally attacked by the circle method in
earlier work. As a result of these work, the current best result is:

Theorem B (Perelli and Zaccagnini [19]). Let X,H,A ≥ 2, and ε > 0. Assume

X1−1/k+ε ≤ H ≤ X.

Then we have
Ψk(X,h) = Sk(h)X

1/k +O(X1/kL−A)

for all but ≪ HL−A integers h ∈ [1,H] ∩ Irrk.

In this note, we consider a kind of mixture of the above two problems.
Namely, we consider the “prime vs. prime power” pairs (pk, p′) satisfying the
equation

p′ = pk + h (7)

which can be regarded as a mixture of equations (2) and (5). We introduce the
sets

Hlocal
k = { h ∈ N | ∀p : prime, (p− 1)|k ⇒ h ̸≡ −1 (mod p) } ,

Hk = Hlocal
k ∩ Irrk.

As for this equation (7), the counting function is given by

Ψ∗
k(X,h) =

∑
nk≤X

Λ(n)Λ(nk + h),

and the Hardy-Littlewood asymptotic formula takes the form

Ψ∗
k(X,h) = S∗

k(h)X
1/k + (Error) (8)

for h ∈ Hk, where

S∗
k(h) =

∏
p|h

(
1 +

1

p− 1

)∏
p∤h

(
1− (wk(h, p)− 1)p+ 1

(p− 1)2

)
,

wk(h, p) =
∣∣{ x (mod p)

∣∣ xk + h ≡ 0 (mod p), (x, p) = 1
}∣∣ . (9)

As for the equation (7), Liu and Zhan [12] obtained a result for the case k = 2,
and Bauer [4] generalized their result to general k:

Theorem C (Bauer [4]). Let X,H,A ≥ 2, and ε > 0. Assume

X1−1/2k+ε ≤ H ≤ X.

Then we have
Ψ∗

k(X,h) = S∗
k(h)X

1/k +O(X1/kL−A)

for all but ≪ HL−A integers h ∈ [1,H] ∩Hk.
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We remark that the results in [4, 12] are stated with the conjugate equation

N = pk + p′. (10)

The aim of this note is to improve this result of Bauer. In particular, we have

Theorem 1. Let X,H,A ≥ 2, and ε > 0. Assume

X1−1/k+ε ≤ H ≤ X.

Then we have
Ψ∗

k(X,h) = S∗
k(h)X

1/k +O(X1/kL−A)

for all but ≪ HL−A integers h ∈ [1,H] ∩Hk.

As it can be easily predicted, our method is also applicable to the conjugate
equation (10). Moreover, our method gives a minor variant of the proof of
Theorem B, i.e. our method is applicable to somewhat broader context than the
method in [19]. Although our method gives an improvement of Theorem C, it
has some disadvantage compared with [4, 12, 19]. Briefly speaking, our method
can not be applied to the restricted counting function. See the last section of
the preprint [20].

Our method is inspired by the work [4, 15, 16, 17]. In particular, the idea of
Mikawa [15] or its variant of Mikawa and Peneva [16] gives our strategy for the
treatment of the minor arcs. In these work [15, 16], the minor arc estimates are
reduced in an efficient way to some Vinogradov-type estimates for sums over
prime numbers. In our case, we shall reduce the minor arcs estimate for the
equation (7) to the minor arc estimate for the twin prime equation (2) which
is given by Mikawa [13] or by Perelli and Pintz [17]. See Sections 6 and 7. We
also remark that the origin of the technique in this note can be traced back to
Brüdern and Watt [7].

Since the details of the proof was given in the preprint [20], we describe our
method by using the particular case k = 2 as an example in this note.

2 Notation

Throughout the letters α, η denote real numbers, X,Y,H,U, V, P,Q,R,A,B, ε
denote positive real numbers, m,n, d, h, u,N denote integers, p denotes a prime
number, and L = logX. For any real number α, let e(α) = e2πiα. The arith-
metic function φ(n) denotes the Euler totient function, Λ(n) denotes the von
Mangoldt function, µ(n) denotes the Möbius function, and τ(n) is the number
of divisors of n. The letters a, q denote positive integers satisfying (a, q) = 1
and the expressions ∑∗

a (mod q)

,
⨿∗

a (mod q)

denote a sum and a disjoint sum over all reduced residues a (mod q) respectively.
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We use the following trigonometric polynomials:

S1(α) =
∑

n≤3X

Λ(n)e(nα), V1(η) =
∑

n≤3X

e(nη),

S2(α) =
∑

n2≤X

Λ(n)e(n2α), V2(η) =
1

2

∑
n≤X

n−1/2e(nη),

We introduce the following complete exponential sums

Ck(a, q) =
∑∗

m (mod q)

e

(
amk

q

)
, Ak(n, q) =

∑∗

a (mod q)

Ck(a, q)e

(
−an

q

)

for k = 1, 2. Note that if (a, q) = 1, then the exponential sum C1(q, a) is reduced
to the Möbius function µ(q). Then we introduce the remainder terms

Rk(η, a, q) = Sk

(
a

q
+ η

)
− Ck(a, q)

φ(q)
Vk(η)

and the truncated singular series

S∗
2(h, P ) =

∑
q≤P

µ(q)A2(h, q)

φ(q)2
.

We assume B ≥ B0(A), where B0(A) is some positive constant depends only
on A. The implicit constants may depend on A,B, ε.

3 The Farey dissection

As usual, we can deduce Theorem 1 with k = 2 from the following L2-estimate:

Theorem 2. Let X,H,A,B ≥ 2, U ≥ 0, ε > 0, and P = LB. Assume

X1/2+ε ≤ H ≤ X, 0 ≤ U ≤ X.

Then for sufficiently large B ≥ B0(A), we have∑
U<h≤U+H

∣∣∣Ψ∗
2(X,h)−S∗

2(h, P )X1/2
∣∣∣2 ≪ HXL−4A, (11)

where the implicit constant depends on A,B, ε.

We can assume, without loss of generality, that U andH are positive integers
and that H ≤ X4/5, which makes the proof of Theorem 3 simpler.

By the orthogonality of additive characters we have

Ψ∗
2(X,h) =

∫ 1

0

S1(α)S2(α)e(−hα)dα+O(X1/2L−3A) (12)
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for any h ≤ U +H ≤ 2X. We use the Farey dissection given by

P = LB , Q = H1/2, R = XP−5, I =
[
Q−1, 1 +Q−1

]
,

Ma,q =

[
a

q
− 1

qQ
,
a

q
+

1

qQ

]
, M′

a,q =

[
a

q
− 1

qR
,
a

q
+

1

qR

]
,

M =
⨿
q≤P

⨿∗

a (mod q)

M′
a,q, m = I \M.

Then by the integral expression (12), we have∑
U<h≤U+H

∣∣∣Ψ∗
2(X,h)−S∗

2(h, P )X1/2
∣∣∣2

≪
∑

U<h≤U+H

∣∣∣∣∫
M

S1(α)S2(α)e(−hα)dα−S∗
2(h, P )X1/2

∣∣∣∣2

+
∑

U<h≤U+H

∣∣∣∣∫
m

S1(α)S2(α)e(−hα)dα

∣∣∣∣2 +HXL−6A

=
∑
M

+
∑
m

+HXL−6A, say.

4 Preliminary lemmas

We first approximate trigonometric polynomials Sk(α) in a standard way.

Lemma 1. We have

Sk

(
a

q
+ η

)
=

Ck(a, q)

φ(q)
Vk(η) +O

(
q(1 + |η|X)X1/kP−16

)
for k = 1, 2.

Proof. This follows from the Siegel-Walfisz theorem [9, Corollary 5.29].

We next recall some basic facts on the complete exponential sums. For the
detailed proofs and discussions, see Section 4 and 5 of [5].

Lemma 2 ([5, Lemma 4.3 (b)]). Suppose that (q1, q2) = 1. Then

A2(h, q1q2) = A2(h, q1)A2(h, q2).

Lemma 3 ([5, Lemma 4.4 (a)]). For any prime p, we have

A2(h, p) = p · w2(h, p)− φ(p),

where w2(h, p) is given by (9).
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5 The major arcs

In this section, we shall evaluate the integral over the major arcs. We have∫
M

=
∑
q≤P

∑∗

a (mod q)

e

(
−ah

q

)∫
|η|≤1/qR

S1

(
a

q
+ η

)
S2

(
a

q
+ η

)
e(−hη)dη,

which we denote by

=
∑
q≤P

∑∗

a (mod q)

e

(
−ah

q

)
Ja,q(h).

We approximate each integral Ja,q(h) by decomposing into the following parts:

Ja,q(h) = Aa,q(h) +Ba,q(h) + Ca,q(h) + Ia,q(h),

where

Aa,q(h) =

∫
|η|≤1/qR

S1

(
a

q
+ η

)
R2(η, a, q)e(−hη)dη,

Ba,q(h) =
C2(a, q)

φ(q)

∫
|η|≤1/qR

R1(η, a, q)V2(η)e(−hη)dη,

Ca,q(h) = −µ(q)C2(a, q)

φ(q)2

∫
1/qR<|η|≤1/2

V1(η)V2(η)e(−hη)dη,

Ia,q(h) =
µ(q)C2(a, q)

φ(q)2

∫
|η|≤1/2

V1(η)V2(η)e(−hη)dη.

We shall prove the estimates

Aa,q(h), Ba,q(h), Ca,q(h) ≪ X1/2P−2L−2A, (13)

and the asymptotic formula∑
q≤P

∑∗

a (mod q)

e

(
−ah

q

)
Ia,q(h) = S∗

2(h, P )X1/2 +O(X1/2L−2A). (14)

We start with Aa,q(h). By using S1(α) ≪ X and Lemma 1, we have

Aa,q(h) ≪ X

∫
|η|≤1/qR

|R2(η, a, q)| dη ≪ X1/2P−2L−2A.

This proves (13) for Aa,q(h). The integral Ba,q(h) can be estimated similarly.
We next estimate the integral Ca,q(h). Note that for |η| ≤ 1/2, we have

V1(η) ≪ |η|−1. Thus we have by the Cauchy-Schwarz inequaliity

Ca,q(h) ≪
1

φ(q)

(∫
qR<|η|≤1/2

dη

|η|2

)1/2(∫ 1

0

|V2(η)|2dη
)1/2

≪ (qR)1/2

φ(q)

∑
n≤X

1

n

1/2

≪ X1/2P−2L−2A.
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This proves (13) for Ca,q(h).
Finally we prove the asymptotic formula (14). Clearly∑
q≤P

∑∗

a (mod q)

e

(
−ah

q

)
Ia,q(h) = S∗

2(h, P )

∫
|η|≤1/2

V1(η)V2(η)e(−hη)dη.

By the orthogonality of additive characters, we have∫
|η|≤1/2

V1(η)V2(η)e(−hη)dη = X1/2 +O(1).

Since Lemma 2 and 3 implies S∗
2(h, P ) ≪ L2, we obtain (14).

By (13) and (14), we arrive at∑
M

≪ HXL−4A. (15)

This completes the evaluation of the major arcs.

6 The minor arcs

The remaining task is to estimate the integral over the minor arcs. As we
mentioned before, we shall reduce our minor arc estimate to the corresponding
estimate for the twin prime problem. This minor arc estimate was obtained by
Mikawa [13] or by Perelli and Pintz [17]. Their result can be stated as:

Theorem 3. Let 0 ≤ U ≤ X, H ≤ V ≪ X and assume the above setting.
Then ∑

U<h≤U+V

∣∣∣∣∫
m

|S1(α)|2 e(hα)dα
∣∣∣∣2 ≪ V X2L−32A

for sufficiently large B ≥ B0(A).

Since our Farey dissection is given in the same manner as Perelli and Pintz [17]
used, it is more direct to apply the proof of Perelli and Pintz [17]. Note that
the admissible range of H obtained in [13, 17] is X1/3+ε ≤ H ≪ X, which is
much stronger than we need here.

As for the reduction of our minor arc estimate to Theorem 3, we use the
idea of Mikawa [15]. First we expand the square and make cancellations along
n. Then we have∑

m

=

∫
m

∫
m

S1(α)S2(α)S1(β)S2(β)
∑

X<h≤X+H

e(−h(α− β))dαdβ

≪
∫
m

∫
m

|S1(α)S2(α)S1(β)S2(β)|min

(
H,

1

∥α− β∥

)
dαdβ.
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By the arithmetic and geometric mean inequality, we have

|S1(α)S2(α)S1(β)S2(β)| ≪ |S1(α)S2(β)|2 + |S1(β)S2(α)|2 .

Therefore we have∑
m

≪
∫
m

∫
m

|S1(α)|2 |S2(β)|2 min

(
H,

1

∥α− β∥

)
dαdβ

≪
∫ 1/2

−1/2

∫
m

|S1(α)|2 |S2(α+ β)|2 min

(
H,

1

|β|

)
dαdβ.

We next expand the square |S2(α+ β)|2, and interchange the order of summa-
tion and integration. Then we have∑

m

≪
∑∑

m2
1,m

2
2≤X

Λ(m1)Λ(m2)

×
∫ 1/2

−1/2

∫
m

|S1(α)|2 min

(
H,

1

|β|

)
e((m2

1 −m2
2)(α+ β))dαdβ

≪
∑∑

m2
1,m

2
2≤X

Λ(m1)Λ(m2)

∣∣∣∣∣
∫ 1/2

−1/2

min

(
H,

1

|β|

)
e((m2

1 −m2
2)β)dβ

∣∣∣∣∣
×
∣∣∣∣∫

m

|S1(α)|2 e((m2
1 −m2

2)α)dα

∣∣∣∣ .
We introduce a new variable u = m2

1 −m2
2. Clearly the range of this variable u

is restricted by the condition |u| ≤ X. Then we can rewrite the above sum as

≪
∑

|u|≤X

J(u)I(u)

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣ , (16)

where

J(u) :=
∑∑

m2
1,m

2
2≤X

m2
1−m2

2=u

Λ(m1)Λ(m2), I(u) :=

∣∣∣∣∣
∫ 1/2

−1/2

min

(
H,

1

|β|

)
e(uβ)dβ

∣∣∣∣∣ .
Since the terms for u and −u contribute the same amount, we can rewrite the
sum (16) as

≪
∑

0≤u≤X

J(u)I(u)

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣ . (17)

We estimate two coefficients J(u) and I(u). Clearly,

J(0) =
∑

m2≤X

Λ(m)2 ≪ X1/2L. (18)
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On the other hand, the equation

u = m2
1 −m2

2

can be factorized into
u = (m1 −m2)(m1 +m2).

Therefore we have
J(u) ≪ τ(u)L2 (19)

for u ≥ 1. For the integral I(u), we have a trivial estimate:

I(u) ≪
∫ 1/2

−1/2

min

(
H,

1

|β|

)
dβ =

∫
|β|≤1/H

+

∫
1/H<|β|≤1/2

≪ L.

On the other hand, the oscillation of e(uβ) gives

I(u) ≪ H

∣∣∣∣∣
∫
|β|≤1/H

e(uβ)dβ

∣∣∣∣∣+
∣∣∣∣∣
∫
1/H<β≤1/2

e(uβ)

β
dβ

∣∣∣∣∣≪ H

u

for u ≥ 1. Therefore we obtained

I(u) ≪ min

(
L,

H

u

)
. (20)

Substituting (18), (19), and (20) into (17), we arrived at∑
m

≪ X1/2L2

∫
m

|S1(α)|2 dα

+ L2
∑
u≤X

τ(u)min

(
L,

H

u

) ∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣ .

By Parseval’s identity, we have

X1/2L2

∫
m

|S1(α)|2 dα ≪ X1/2L2

∫ 1

0

|S1(α)|2 dα ≪ X3/2L3.

Therefore we obtained∑
m

≪ L2
∑
H

+L3 sup
H<U≤X

∑
U

+X3/2L3, (21)

where ∑
H

:= L
∑
u≤H

τ(u)

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣ ,

∑
U

:= H
∑

U<u≤2U

τ(u)

u

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣ .

10



Now we estimate the sum
∑

H . We first use the Cauchy-Schwarz inequality
in order to make L2-moment. Then we have

L2
∑
H

≪ H1/2L5

∑
u≤H

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣2
1/2

. (22)

Applying Theorem 3 with U = 0 and V = H, we have

L2
∑
H

≪ HXL−4A. (23)

Finally, we estimate the sum
∑

U . As before, we start with the Cauchy-
Schwarz inequality. Then

L3
∑
U

≪ HU−1/2L5

 ∑
U<u≤2U

∣∣∣∣∫
m

|S1(α)|2 e(uα)dα
∣∣∣∣2
1/2

.

Applying Theorem 3 with V = U , we have

L3
∑
U

≪ HXL−4A. (24)

Summing up all of the above estimates, we arrived at∑
m

≪ HXL−4A +X3/2L3 ≪ HXL−4A (25)

since X1/2+ε ≤ H. This completes the estimate for the minor arcs and the
proof of Theorem 2.

7 Completion of the proof

We need to approximate the truncated series S∗
2(h, P ) by the full series S∗

2(h).

Lemma 4. Assume Xε ≤ H ≤ X. Then we have

S∗
2(h, P ) = S∗

2(h) +O
(
L−A

)
for all but ≪ HL−A integers h ∈ [1,H] ∩H2.

Proof. This can be proven by the method of Kawada [10, Corollary 1].

We can now prove Theorem 1. By Theorem 2 with U = 0, we have

#
{
h ∈ [1,H] ∩H2

∣∣∣ ∣∣∣Ψ∗
2(X,h)−S∗

2(h, P )X1/2
∣∣∣ > X1/2L−A

}
≪ HXL−4A

XL−2A
≪ HL−A.
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Therefore we have

Ψ∗
2(X,h) = S∗

2(h, P )X1/2 +O
(
X1/2L−A

)
for all but ≪ HL−A integers h ∈ [1,H] ∩H2. Now Lemma 4 implies that

Ψ∗
2(X,h) = S∗

2(h)X
1/2 +O

(
X1/2L−A

)
with ≪ HL−A additional exceptions. This completes the proof of Theorem 1
for the case k = 2.
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