Stationary solutions
to the Euler—Poisson equations
in a perturbed half-space
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1 Introduction

The purpose of this survey paper is to discuss mathematically the formation of a
plasma sheath near the surface of materials immersed in a plasma, and to study qualitative
information of such a plasma sheath layer. In fact we summarize the results [8, 11, 13]
investigating the stationary solutions to the Euler-Poisson equations in a half-space or
perturbed half-space.

The plasma sheath appears when a material is immersed in a plasma and the plasma
contacts with its surface. Since the thermal velocities of electrons are much higher than
those of ions, more electrons tend to hit the surface of the material than ions do, which
makes the material negatively charged with respect to the surrounding plasma. Then the
material with a negative potential attracts and accelerates ions toward the surface, while
repelling electrons away from it, and this results in the formation of non-neutral potential
region near the surface, where a nontrivial equilibrium of the densities is achieved. Con-
sequently, positive ions outnumber electrons in this region and this ion-rich layer near the
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boundary is referred to as the plasma sheath. This boundary layer shields the plasma from
the negatively charged material. For the formation of sheath, Langmuir in [6] observed
that positive ions must enter the sheath region with a sufficiently large kinetic energy.
Bohm in [3] derived the original Bohm criterion for the plasma containing electrons and
only one component of mono-valence ions, which states that the ion velocity u at the
plasma edge must exceed the ion acoustic speed for the case of planar wall. For more
details of the sheath formation, we refer the readers to [4,7,9,10].

The motion of positive ions in a plasma is governed by, after suitable nondimension-
alization, the Euler-Poisson equations:

ooV (o) =0, (1.1a)
u+ (u-V)u+ KViegp = Vo, (1.1b)
Ap=p—e?, (1.1¢c)

where the unknown functions p, w = (u, uz, u3) and —¢ represent the density, velocity
of the positive ion and the electrostatic potential, respectively. Moreover, K > 0 is a
constant of temperature of the positive ion. The first equation describes the mass balance
law, and the second one is the equation of momentum in which the pressure gradient and
electrostatic potential gradient as well as the convection effect are taken into account. The
third equation is the Poisson equation, which describes the relation between the potential
and the density of charged particles. For this equation, the Boltzmann relation stating
that the electron density is given by p. = e~ is assumed.

Let us mention the mathematical results which studied the sheath formation by using
the Euler—Poisson equation (1.1a)—(1.1c). The planar wall case have been well investi-
gated. Ambroso, Méhats, and Raviart did a pioneering work [2] where the unique exis-
tence of monotone stationary solutions was proved in a bounded interval, provided that
the Bohm criterion holds. Furthermore, Ambroso [1] numerically checked that solutions
to initial-boundary value problems approach the stationary solutions constructed in [2] as
the time variable becomes large. Suzuki [11] derived a necessary and sufficient condition,
including the Bohm criterion, for the unique existence of monotone stationary solutions in
a half-space. Furthermore, he showed the asymptotic stability of stationary solutions by
assuming a condition slightly stronger than the criterion. After that, the stability theo-
rem was shown under the Bohm criterion in [§]. For a multicomponent plasma containing
electrons and several components of ions, similar results to [8,11] were obtained in [12]
under the generalized Bohm criterion derived by Riemann in [10]. These results validated
mathematically the Bohm criterion and defined the fact that the sheath corresponds to
the stationary solution.

For the planer wall cases, the formation of the sheath has been well-understood as
above. It is of greater interest to study the cases that walls are nonplanar, and to know
how the Bohm criterion depends on the shape of walls. For this direction, Jung, Kwon,



and Suzuki in [5] studied the existence of stationary solutions in an annulus. They focused
only on spherical symmetry solutions and then proposed a Bohm criterion for the annulus,
which essentially differs from the original Bohm criterion. Recently, Suzuki and Takayama
in [13] showed the existence and stability of stationary solutions in a perturbed half-space,
and found out a Bohm criterion for the perturbed half-space.

This paper provides an overview of the results in [8,11,13] which studied the stationary
solutions in a half-space or perturbed half-space, and also observes how the Bohm criterion
varies. We consider an initial-boundary value problem of (1.1a)—(1.1c) in a perturbed
half-space

Q= {z = (11,70, 73) = (11,7") € R*| 2, > M(2')} with M € ﬂ H*(R?).
k=1

We remark that Q with M = 0 is just a half-space R?. The initial and boundary data
are prescribed as

(P, u)(0.z) = (po. uo)(x), (1.1d)
liin (p, u1,ug,u3, @) (t, 1, 2") = (1,uy,0,0,0), (1.1e)
o(t, M(2'),2") = ¢ for 2’ € R?, (1.1f)

where u, and ¢, are constants.

Note that lim,, . p(x1,2") = 1 is necessary owing to (1.1c) and lim,, o ¢(x1,2") =0
in the construction of classical solutions to (1.1c). We seek solutions in the region, where
the following two conditions hold:

;2}."2 p(x) >0, (1.2)
¢ u(z) V(M) —z1) VE >0, (1.3)

m
we00 T+ [VM()P

by assuming the same conditions for the initial data (pg, ug):

, o ug(z) - V(M(2) — a)
inf po(x) >0, inf Newa iy VK > 0. (1.4)

The second condition in (1.4) is necessary for the well-posedness of the problem (1.1).
The stationary solutions (p®, u®, ¢*) to (1.1) solves the equations

V- (p'u’®) =0, (1.5a)
(u’-V)u® + KV(log p®) = V¢, (1.5Db)
Ap* =p* —e (1.5¢)



with the conditions

;ggp (r) >0, (1.5d)

lim (p°,uy,us, u3, @) (¢, x1,2") = (1,u4,0,0,0), (1.5e)
Tr1—0o0

¢*(t, M(2'),2') = ¢ for 2’ € R% (1.5f)

Before closing the introduction, we present several notations to be used throughout
this paper. For a nonnegative integer k and Q C R3, H*(Q) is the kth order Sobolev
space in the L? sense, equipped with the norm || - ||,. We also define weighted Sobolev
spaces HY(Q) and HE () for @ > 0 and X > 2 by

k
H)(Q) = {f e H*Q) | IfI7 . = Z/ MV P da < OO} 7
j=0 /%

k
sz)\(Q) = {f S Hk(Q) ||f”i,a,)\ = Z/Qwa,/\lvjf|2 dx < OO} s
j=0

where

Wor(71) = (1 +min {a, (1 + |M|p~@e) "} xl))‘ .
Furthermore, C*([0,T]; H) denotes the space of k times continuously differentiable func-
tions on the interval [0, 7] with values in some Hilbert space H.

2 Results on the half-space Ri

In this section, we review the results on the existence and stability of stationary solu-
tions in the half-space Q = R%. The paper [11] derived a necessary and sufficient condi-
tion for the existence of planar stationary solutions (p®, u®, ¢*) = (p, u, qg) = (p,,0,0, gz~5)
They are solutions to (1.5) independent of the tangential variable z’, and thus satisfy the

equations
1 -

(§a2 + K log [)) = ¢y, (2.1b)
(517111 = ﬁ - 6_&)7 (21C)

and the conditions
nf pz1) >0, (2.1d)
Jim (5,4, d)(z1) = (1,uy,0), (2.1e)
$(0) = . (2.1f)



The existence is summarized in the following theorem.

Theorem 2.1 ([11]). (i) Let the end state uy satisfy K < v < K + 1. If ¢, # 0,
stationary problem (2.1) does not admit any solutions as

pi, ¢ € C(RY) and p,i, ¢, b, € C'(Ry). (2:2)

If ¢» = 0, the end state (p,u, gE) = (1,u,0) is the unique solution.

(ii) Let the end state uy satisfy either ui < K or K+1 < u?%. Then stationary problem
(2.1) has a unique monotone solution (p,a,d) as (2.2) if and only if the boundary data
oy satisfies conditions

V(gy) 20 and ¢y > f(lus|/VE), (2.3)
where the Sagdeev potential V' and the function f is defined by
¢ -1 —n u?ﬁ- u?ﬁ-
Vi) = [ 17— dn Fl)i= Klogp+ 35—
0

and the inverse function f=1 is defined by adopting the branch which contains the end
state (p,¢) = (1,0). Moreover, if K+1 < u% and ¢, > f(Juy|/VK), the solution (p, @, ?)
belongs to C*°(R,) and satisfies

|0, (5 = D)(an)| + 10k, (@ — wi)(@1)| + |0, d(21)| < Clple™, 1=0,1,2,...,
where a and C' are positive constants independent of ¢y.

Theorem 2.1 ensures that the planer stationary solution exists under the original Bohm
criterion:

ubl > K+1, uy <0. (2.4)

We remark that the conditions in (2.3) are valid for ¢, with |¢,| < 1 provided that the
criterion holds.

From now on we study the stability of monotone stationary solutions assuming (2.4).
First let us mention the reason that we require (2.4) in the stability analysis. We introduce

vi=p—1, n::u_(u+7070)7 0:=¢

and linearize (1.1a)—(1.1c) around the end state (1,u4,0,0,0) as

Uy + uptp,, +divy =0, (2.5a)
e+ ugny, + KV = Vo, (2.5b)
Ao =1 +o. (2.5¢)



Then we consider (2.5) in the whole space R?, and calculate the spectrums:

p(if) =1 <—§1U+ + |§|\/K+ %MP) , —i&uy for £ € R’

We see that the real part of all the spectra are zero, and thus there is no dissipative
structure in this framework. To make a dissipative structure, we introduce new unknown
functions

(U, H,X) = (eP21/2%), P21/29 B21/25) for B e (0, \/5),

and rewrite the equations (2.5) for (U, H,X). The spectrums are given by

p(i&) = 5%4—2’ (—§1u+:|: \/KC—%—l—l—K) : % —i&u,  for £ € R,
where
i
=14 - T + &1
It is shown in [8, Proposition 1.2] that
sup Re (1(i6) = ma Re (u(0)} = 5 (e + VEFO-FT). (26)

The equations for (U, H,Y) is linearly stable if and only if the rightmost of (2.6) is
negative. Furthermore, the negativity holds if and only if (2.4) holds and f is suitably
small. Consequently, the original Bohm criterion (2.4) is a reasonable assumption for the
stability analysis.

We are now in a position to mention the stability theorems.

Theorem 2.2 ([8]). Let M = 0 and u, satisfy (2.4). There exist positive constants 3 and
0 such that if ||(po — p, uo — @)||3,8 + |s| < 9, then initial-boundary value problem (1.1)
has a unique time-global solution (p,w, ) with (1.2) and (1.3) in the following space:

(p—pu—1i,6—9) e [(C(0.T) B (®)| x C([0,7); HY(RL)).

1=0

Moreover, it holds that

sup |(p_ﬁ7u_&7¢_<5)(t7x>| < Ce™* fOT’t € [07OO>7

3
zERY

where C' and v are positive constants independent of ¢, and t.



Theorem 2.3 ([8]). Let M =0, A > 2, v € (0,\], and uy satisfy (2.4). There exist
positive constants 5 and & such that if |[(po — p,wo — @)l px + |Ps| < 0, then initial-
boundary value problem (1.1) has a unique time-global solution (p,w,d) with (1.2) and
(1.3) in the following space:

(p—p"u—1,6—0) € ﬂcl ([0, T, HE(RL) | x C([0,T]; H3,/(RD)).

Moreover, it holds that

sup |(p— gy — @, ¢ — @)(t, )| < C(L+ ) fort e [0, 00),
xERi

where C' is a positive constant independent of ¢y, and t.

3 Results on the perturbed half-space ()

This section is devoted to the study of the stationary solutions in the perturbed half-
space §). Besides the original Bohm criterion (2.4), we require the supersonic outflow
condition for the end state u,:

—ug
nf TG VK > 0. (3.1)
This condition follows from replacing ug by (u+, 0,0) into the well-posedness condition in
(1.4). Therefore, it is necessary if we seek the solutions to problem (1.1) in a neighborhood
of the end state (p, uy, us, ug, ¢) = (1,uy,0,0,0). We remark that (2.4) ensures (3.1) for
the case M =0 1e Q=R3.
The stationary solution (p*, u®, ¢*) is constructed by regarding it as a perturbation of
(p, @, §)(M(z)) = (p,4,0,0, ) (M(x)), where (5, @, ¢) is the planer stationary solution in
R? and

The result is summarized in the following theorem. It is worth pointing out that we do
not require any smallness assumptions for the function M representing the boundary 0f2.

Theorem 3.1 ([13]). Let m > 3 and uy satisfy (2.4) and (3.1). There exist positive
constants f < «/2, where v is being in Theorem 2.1, and § such that if |¢p| < 6, then
stationary problem (1.5) has a unique solution (p°, u®, ¢*) as

(p°,u®. ¢°) — (oM, o M,po M) e [H;ﬂ(@)]‘* x HPt (Q),
1(p* — o M,u* —@o M)|2, 5+ |¢° — do M|Z .15 < Clewl.

where C' is a positive constant independent of ¢y.
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We also discuss the stability of stationary solutions in both exponential and algebraic
weighted Sobolev spaces. Note that the smallness of M is not assumed in the exponential
weight case.

Theorem 3.2 ([13]). Let uy satisfy (2.4) and (3.1). There exist positive constants <
a/2, where a is being in Theorem 2.1, and 0 such that if ||(po — p*, wo — u®)||3 5+ |dp| < 0,
then initial-boundary value problem (1.1) has a unique time-global solution (p,w, ) with
(1.2) and (1.3) in the following space:

4

(p—p*u—u’¢—¢°) € |[C0,T); HI ()| x C([0,T]; H}(2)).

1=0

Moreover, it holds that

sup |(p - ps7u - us7¢ - ¢S)(tvx)| S Ce_’}/t fOTt € [0700)7
€N

where C' and ~ are positive constants independent of ¢, and t.

Theorem 3.3 ([13]). Let A > 2, v € (0,)], and uy satisfy (2.4) and (3.1). There
exist positive constants By < [, where § is being in Theorem 3.1, and & such that if
| M||5+1|(po — p°, wo — u®)||3.80.0 + | 6| <9, then initial-boundary value problem (1.1) has
a unique time-global solution (p,w,®) with (1.2) and (1.3) in the following space:

1 4
(p—pu—w,¢—g¢°) e |[ OO, T); HS ()| x C(0,T]; Hj, 4(2)).
1=0

Moreover, it holds that

sup |(p - ps7,u, - us7¢ - ¢S>(t7x>| < C(l + t)_)\_l—y fOT’t € [0700)7
z€Q

where C'is a positive constant independent of ¢, and t.

Bohm originally derived the criterion (2.4) for the formation of sheaths only in the
planer wall case. What most interests us in Theorems 3.1 and 3.2 is that his criterion
with the supersonic outflow condition (3.1) also guarantees the formation of sheaths in
any case that the shape of walls is drawn by a graph. Mathematically speaking, (2.4)
and (3.1) are sharp conditions for the existence and stability of stationary solutions, since
they are almost necessary conditions. Hence, it is reasonable to conclude that (2.4) and
(3.1) are the Bohm criterion for the perturbed half-space.
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