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1 Introduction

This article is the summary of [9]. We consider the system for a motion of
compressible viscoelastic fluids:

Op + div(pv) = 0, (1.1)
p(Ow +v - Vo) — vAv — (v 4+ V)Vdiv + Vp(p) = B2div(pF 'F),  (1.2)
OF +v-VF =VoF
inR3. Here p = p(x,t), v ="T(v!(x,t),v*(x,t),v3(z,1)), and F = (F*(x,t))1<j r<3
denote the unknown density, the velocity field, and the deformation tensor,

respectively, at position x € R? and time ¢t > 0; P = P(p) is the given
pressure; v and v/ are the viscosity coefficients satisfying

v>0, 2v+ 3V > 0;

B > 0 is the strength of the elasticity. In particular, if we set § = 0, the
system (1.1)—(1.3) becomes the usual compressible Navier-Stokes equation.
We assume that P'(1) > 0, and we set v = /P'(1).

The system (1.1)—(1.3) is considered under the initial condition

(0,0, F)|i=0 = (po, vo, Fo). (1.4)

We also impose the following conditions for py and Fj:

podetFo = ]., (]_5)
3
Z(Fgﬂlameg’“ — Frkg, FINY =0, j,k,1=1,2,3, (1.6)
m=1
div(po ' Fy) = 0. (1.7)



It follows from [5, Appendix A] and [18, Proposition.1] that the quantities
(1.5)—(1.7) are invariant for ¢t > 0:

pdetF =1, (1.8)
3
> (F™M0,, F* — F™0,, F') =0, j k1=1,2,3. (1.9)
m=1
div(p'F) = 0. (1.10)

The purpose of this article is to study the large time behavior of solutions
of the problem (1.1)—(1.7) around a motionless state (1,0, 1), where [ is the
3 x 3 identity matrix. Especially, we are interested how the elastic force
B2div(pF T F) works.

The system (1.1)—(1.3) is obtained from motion of compressible viscoelas-
tic fluid in macroscopic scale.

In the case 8 = 0, the large time behavior of the solutions around (p, v) =
(1,0) has been investigated so far. Matsumura and Nishida [15] proved the
global in time existence of the solutions of the problem (1.1)—(1.4) provided
that the initial perturbation is sufficiently small in H® N L', and derived the
following L?-decay estimates:

IVF(o(t), m(t))||r2 < C(L+) 172, k=0,1,

where (¢, m) = (p — 1, pv). Hoff and Zumbrun [2] established the following

L? (1 < p < ) decay estimates in R™, n > 2:

o1+ 200 (3 ),
02

1<
C(l+t)” , 2<p< oo,

NN

(@), m(6)]|r < {

where L(t) = log(1+t) when n = 2, and L(t) = 1 when n > 3. Furthermore,
Hoff-Zumbrun[2] derived the following L? (1 < p < 0o) decay estimates and
asymptotic properties:

(@), m@))] zr < {

H <(€b(t),’m(t)) — <07]-“—1 (C_sztP(f)mo)))
< O(1+1)3073)720-3)

Lr 2 <p < o0,

)

where (¢(t), m(t)) = (p(t) — 1, p(t)v(t)) and P(&) = I — fg—é, ¢ € R3. Here
the symbol * stands for the Fourier transform and F~! denotes the inverse
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Fourier transform. The authors of [2] showed that the hyperbolic aspect of
sound wave makes the decay rate of the solution slower than the heat kernel
when 1 < p < 2. On the other hand, if 2 < p < oo, the compressible part

of the solution (¢(t), m(t)) — (O, Ft (e—“\ﬁlztﬁ(g)mo)) converges to 0 faster

than the heat kernel.

We next give the development of the works in the case 5 > 0. The
local in time existence of the strong solution of the initial value problem
(1.1)-(1.7) was shown by Hu and Wang [4]. The global existence of the
strong solution of the initial value problem (1.1)—(1.7) was proved by Hu
and Wang [5], Qian and Zhang [18], and Hu and Wu [6], provided that the
initial perturbation (py — 1,vg, Fo — I) is sufficiently small. Hu-Wu[6] and
Li-Wei-Wao[12] established the following L? (2 < p < o0) decay estimates:

()] r < C(1+1)2073),

where u(t) = (o(t), w(t), G(t)) = (p(t), w(t), F(t)) — (1,0, I). This shows the
diffusive aspect of the system (1.1)—(1.3) at least. However the hyperbolic
aspects of elastic shear wave and sound wave does not appear. We will clar-
ify the diffusion wave phenomena caused by interaction of three properties;
sound wave, viscous diffusion and elastic shear wave and improve the results
obtained in [6, 12]. We also refer to [3, 14, 25] in recent progresses.

In view of the results in [2], it is expected that the system (1.1)—(1.3)
has the diffusion wave phenomena affected by the interaction of the sound
wave, viscous diffusion and elastic shear wave. In fact, we characterize above
phenomena by showing that if the initial perturbation ug = (po—1, vo, Fo—1I)
is sufficiently small in L' N H?, then the global strong solution satisfies the
following L? decay estimate

I(p(8) = L, 0(t), F(t) = D)lw < C(1+ 1) 2075)73070) 1 < p <00, t >0,

This result improves the decay rate of the LP norm of the perturbation w
obtained in [6, 12] for p > 2. Moreover the above decay rate might be
optimal.

We give an outline of the proof of the main result. Since the constraints
(1.8)—(1.10) are nonlinear, straightforward application of the semigroup the-
ory does not work well. To overcome this obstacle, we construct a nonlinear
transform which makes the constraint (1.10) a linear one. We first give a
displacement vector ¢y = z — X € R3 used in [19, 22], where X = X (z,t)
is the inverse of the material coordinate. We next make use of the trans-
form ¢ = ¢ — (—A)Hdiv (¢V3 + (1 + ¢)R(Ve)). Here h(V)) is a func-
tion satisfying (Vi) = O(|V]?), VY| < 1, and (—A)~! is the nonlocal
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transform defined as (—A)™' = F1¢|72F. Here F denotes the Fourier
transform. This follows that the constraint (1.10) becomes the linear condi-
tion ¢ + tr(Vey) = ¢ + divep = 0. Furthermore, the decay estimate of the
LP (1 < p < o0) norm of u = (¢, w, ) is obtained from U = (¢, w, V).
Consequently, the LP decay estimate can be obtained by employing the fol-
lowing integral equation

U@):64WK®%1/%*“QWWUkw

Here L is the linearized operator around (1,0, I); N(U) = (N1(U), No(U), N5(U))
is a nonlinearity such that Ny +trNs = 0. Indeed we find that e ‘.U (0) and
f(f e~ =)L N(U)ds decay as t — oo in LP for p > %, provided that the linear
constraints for U and N(U) hold.

This article is organized as follows. In Section 2 we state the main result
of this article on the LP decay estimates. In Section 3 we give an outline of
the proof of the main result.

2 Main Result

In this section we summerize the results in [9].
We set u(t) = (6(t), w(t), G(t) = (p(t) — 1,v(t), F(t) — I). Then u(?)
satisfies the following initial value problem

(

Oy + divw = ¢y,

dyw — vAw — vV divw + 12V — B2divG = g,

G — Vw = g, (2.1)
Vo +div'G = g4,

L ui=0 = g = (¢o, wo, Go)-

Here g;,7 = 1,2, 3,4, denote the nonlinear terms;

g1 = —dIV(¢W),
g = —w-Vw+ ﬁ(—VAw — vVdivw + VQWS) — ﬁvQ(@
0 v oG+ GG+ 0GTG).
1+¢ I+o¢

g3 = —w - VG + VuwG,
g4 = —dIV((bTG)7



where .
Q) = ¢ / PY(1+ s6)ds, VO = O(6)V
0

for |¢| < 1.
We recall the L? decay estimates obtained in [12].

Proposition 2.1. ([12]) Let ug € HY, N > 3. There is a positive number €

such that if ug satisfies ||ugl|p1 + ||uol|ms < €0, then there exists a unique solu-
tion u(t) € C([0,00); HY) of the problem (2.1), and u(t) = (¢(t), w(t), G(t))
satisfies

t
()7 +/O (V) Frn—1 + [Vw(s) [ + VG (8)[Fv-1)ds < ClluolFw
_3_k
IV u(t)ll 2 < O+ )71 2 (Jluoll 2 + [[uolls)
fork=0,1,2,..., N—1andt > 0.

We next state the main result of this article which reflects an effect of
hyperbolic aspects of diffusion waves.

Theorem 2.2. (i) Let 2 < p < oo. Assume that ¢y, Go, and Fy ' satisfy
Vo — divi(I +Go)™t =0 and F; ' = VX, for some vector field Xo. There
is a positive number € such that if uy = (¢o. wo, Go) satisfies ||uo||lgs < €
and uy € L', then there exists a unique solution u(t) € C([0,00); H?) of the
problem (2.1), and u(t) = (¢(t), w(t), G(t)) satisfies

lu@®)llze < Cp)(1 +6) 2070202 (|| 11 + [[uo] 1)

uniformly for t > 0. Here C(p) is a positive constant depending only on p.

(ii) Let 1 < p < 2. Assume that ¢o, Gy, and F, ' satisfy Vo — div'(I +
Go)™' = 0 and F,' = VX, for some vector field Xo. There is a positive
number €, such that if ug = (¢o, wo, Go) satisfies ||uol|lms < €, and uy € L*,
then there exists a unique solution u(t) € C([0,00); H*) of the problem (2.1),
and u(t) = (o(t), w(t), G(t)) satisfies

_B(1_1)gpl(2_
lu®llzr < )+ 720G (fugll s + o |0 + ol )
uniformly for t > 0. Here C(p) is a positive constant depending only on p.

Remark 2.3. Since 3 ( - %) > 0 for 2 < p < 0o, Theorem 2.2 (i) follows

that the LP norm of the perturbation u = (¢, w, ) tends to 0 faster than the
heat kernel as t — oo. This gives the hyperbolic aspect of the elastic force
B2div(pF " F) which leads to the improvement of the result in [12].
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3 Proof of Theorem 2.2

In this section, we give an outline of the proof of Theorem 2.2. Since the
global in time existence and the L? decay estimates of higher order derivatives
are proved by Proposition 2.1, it suffice to investigate the L” decay estimates.
We first rewrite the problem (2.1) into a specific form to prove Theorem
2.2,
Let = (X, t) be the material coordinate defined as the solution of the
flow map:

dx
%<X’ f) = 7)(77(X7 t),t%
z(X,0) =X,

and we denote its inverse by X = X(x,t). According to [1, 22], F' is given
by F = 22 Tt is shown in [19] that its inverse F~' is written as F~!(z,t) =

VX (z,t) if Fy ' has the form Fy ' = VX,. We set ¢) = 2— X. Then ¢ solves
O —v=—v- Vi,

and satisfies . .
G = V¢ +h(Vy), (3.1)

where (Vi) = (I — Vi)' — I — V).
We note that (3.1) is equivalent to

Vi =1—(I+G)". (3.2)
We have the following estimates for G' and Vi

Lemma 3.1. Assume that G and 1 satisfy (3.1). There is a positive number

do such that if ||G||gs < min{l, o}, the following inequalities hold:
CHVll < IGllr < CIVEllr, 1< p < o0, (33)
V2|2 < CIVG 2, (3.4)
IV*dllze < CUIVGip + IV2Clz2), (3.5)
IV* ]2 < CUIVGIm VGl + [IV2Cl2)- (3.6)

See [9, Lemma 4.2.] for a proof of Proposition 3.1.



Based on Lemma 3.1, we consider ¢ instead of G. In terms of U =
(¢, w, V1)), the problem (2.1) is transformed into

Oy + divw = fy,

dw — vAw — iV divw + 12V — B2AY = fo,

VY — Vw = [, (3.7)
Vo+Vdive = fi,

Uli=o = Uy = (¢0, wo, Vo).

Here f;,j = 1,2, 3,4, denote the nonlinear terms;

fl = g1,
fo = go + B2divR(VY),
fs==V(w- V),

fi=—divT (VY + (1 + ¢)h(V)).

We next introduce ¢ by ¢ = ¢ — (=A) " divT (¢V) + (1 + ¢)h(V)),
where (—A)™! = FH¢|72F, and set ¥ = V. By this transformation,
the nonlinear constraint V¢ + Vdivyy = f1 is transformed into the linear
constraint ¢ + divy) = 0; and the problem (3.7) is rewritten as

@gb + divw = N1<U),

dyw — vAw — vVdivw + 12V — B2divl = No(U),

oW — Vuw = N3(U), (3.8)
p+tr¥ =0, U=V,

U|t:0 =Uy = (¢07w0,%)-

Here N;(U),j =1,2,3, denote the nonlinear terms;

Ni(U) = fi,

Na(U) = fo = B2div " (60 + (1 + §)h(V)),

N3(U) = =V (w- V1)) — V(=A)'Vdiv(¢pw) — V(=A) " 'Vdiv(w - Vi)).
We note that N; and Nj satisfy N; +trN3 = 0. The relations between ) and

¢ are given as follows.

Lemma 3.2. (i) Let Uy and U be the ones as in (3.7) and (3.8), respectively.
If po and by satisfy Voo+Vdiviyy = 0, then it holds Uy = Uy = (¢, wo, Viby).



(ii) There is a positive number &y such that the following assertion holds
true. Let
¢ € C([0,00); H?), ¥ € C([0,00); H*).

If |9l c(0,00); %) H 1P || (10,00): 14y < 0, then there uniquely exists | € C([0,00); HY)
such that

||~’¢~)||C([o,oo);H4) < \/5—0, ~ N
=1+ (=A)"Hdiv (VY + (1 + ¢)h(Ve)). (3.9)

(iii) Let 1 < p < oo. There is a positive number 6, such that if ||| c((0,00); %)+
V)| (10,00):m3) < min{do, 0y}, the following inequalities hold for t > 0:

CoHVY @) e < IVY(E)]e < Coll VO ()| 10 (3.10)

(iv) There is a positive number 61 such that if ||¢||C([o,oo);H3)+||V1/~f||0([o,oo);H3) <
min{dy, 01}, the following inequalities hold for t > 0:

IVl < CUIGE) |z + [IVE(E)]1<)

~ (3.11)
+CUIVe®a + V2 ()] )?,
V() |22 < ClIV(F) |12 ) ) (3.12)
+C (¢ |z + VYO | a2) V() || 12,
IV20(0) |2 < COA+ [[6(t)] a2 + VO |2) [ V3 () 2 (3.13)
+CUIVe®a + HV%(t)HHI)H~V1/7(t)IIH2,
V4 (t)]l2 < V(@) |2z + Clo(0)] s + IV ()| 12)*. (3.14)

See [9, Lemma 4.] for a proof of Proposition 3.2.

Remark 3.3. Due to the restriction p > 1 in Lemma 3.2 (iii), the case p = 1
is removed in Theorem 2.2.

We rewite the problem (3.8) into the following form:

U+ LU = N(U),
¢+ divyy =0, (3.15)
Uli=o = Ub,
where
0 div 0 N(U)
L=| ¥V —vA—-0pVdiv-p3div |, NU)= | N(U) |.
0 -V 0 N3(U)



We introduce the low-high frequency decomposition of U(t). Let @1, ¢oo €
C>(R?) be cut-off functions such that

N N I .
$1(8) = {0 > P1(—€) = P1(8),

Poa(§) =1 = £1(8),
M; = min {é, —W} .

v v+

where

We define the operators P, and Py, on L? by
Piu=F 1 (¢11), Pou=F *(@uott) for u € L*.
The solution U(t) of (3.15) is decomposed as
U(t) = Up(t) + Uso(t), Up(t) = PU(t), Us(t) = P U(2).

We see that U;(t) = (¢;(t), w;(t), Vip;(t)), j = 1,00 satisfy the following
integral equations;

U;(t) = e ""U;(0) + / t e I PN(U(s))ds,

g; +diviy; =0, (3.16)

U;(0) = P;Uy, ¢o+ divipy = 0.

Since U holds the linear constraint ¢+divi) = 0, the semigroup e~**Uj decays
ast — 0 in L? for p > %. Indeed, we obtain the following LP estimates for
U; and Uy,.

Lemma 3.4. If ¢y + divipg = 0, then the following estimates hold:
(i) e U (0)]lr < (1 +8) 2260y, 1< p < o0

(ii) [le™* Us (0)|| 2o < Ce™||Upl[1v, 1 < p < o0
(iii) le™" Usc (0)[[ 2 < Ce™||Us | 2.

Proof To prove Lemma 3.4, we use the following expression of the semi-
group e~ LUy:

95(570 IA{M £7t> Iglz<§7t Igl‘s(g?t) ng(é)
o= [ ) | = | K26 K20 K2E1 || @
l[/(g,t) Ksl(ﬁvt) K32(£7t) K33(€7t) WO(S)

(3.17)



Here

na(§)t us(§)t

[(11(57 t) _/L3(£>€ /1’4(€>6 7
113(8) — pa(§)
et (Ot _ e/t4(€)tT

et3(Ot _ opa(€)t

PRGETRGN

K?(g,1) = —in?

K22 :Ml(g)em(é)t—N2(€)€m(€)t (I §T§>
(&) (€)= pal€) GE
N ,u:,)(g)eus(é)t —M4(§)6“4(€ fo
3(8) — pa(é) €]
K%(,t) =0
33 Ml(f)em(&)t—M2(§>6m(€)t ([ §T§>
) = O~ o) B
N pi3(€)er O — 1y (£)ers O ¢Te
3(8) — pa(§) 1€]2
K2(&,0)0(€) and K32(€, t)1g(€) are defined by
WOt _ pua(O)t T
K23 7 _ gl € <I § §)w
O =5 e = me \| e s
' 26’“‘3(5) eta(E)t éfTéf
@ — ) g
WOt _ ua(O)t T
K32(¢ )i :-6“ € ([ ff)
(& 000() =~ Ty e ) 08
ets(©t _ ena©t ¢Te
o ® @ O s
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where ;(§), j =1,2,3,4, are given by

I e e

11 (§) 5

pale) = AL =V~ AT

o) = Lt DT+ T PP B+
ey = o PNER = o+ PVIER - AT+ 7T

The derivation of the above expression can be confirmed in [9, Appendix A.].
Since p;, j = 1,2, 3,4 have the following properties

v . ; .
/JJ](g) ~ _§|€|2 +Z(_1)]+1ﬁ|§|7 for |§| < 17 J= 1727

() ~ 2 paf€) ~ —Iel, for e > 1,

p13(€) ~ —”;lef +i(=1) VB P for [ <1, = 3.4,
B +~2 N2
/’L3(£) ~ = V4D ’ /1’4(5) ~ _(V + V)|£| ) for |€| > ]-7

the estimates (i) and (ii) follow from the results in [11, 20]. The estimate
(iii) can be proved by the energy method. This completes the proof. B

To prove Theorem 2.2 (i), we apply Lemma 3.4 (i) to the equation (3.16)
for 5 = 1. For the high frequency part U,,, we use the energy method.
Theorem 2.2 (ii) can be shown by applying Lemma 3.4 (ii) to (3.16) for
j = oo and using Lemma 3.1 and Lemma 3.2. We note that since N(U)
also satisfies the linear constraints Ny (U) + trN3(U) = 0, one can see from
Lemma 3.4 that the Duammel terms fot e~ =SILPN(U(s))ds, j = 1,00 are
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estimated as

t

~UIEPIN(U(s))ds

Lpr

3

<C/ (1+¢—s) 282GV N (U (s))]| 2 ds

N|=

2
G ol 110,

t
/ e~=9Lp N (U(s))ds
0

<01+ 00t

P
t
sc/?ﬂW%Nwwwm®
0

<01+ 2070 3G ug| s, 1< p <2,
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