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1. INTRODUCTION

This article summarizes a combinatorial approach for the computation of
topological complexity based on the existing study [Tan18].

The robot motion planning problem considers the assignment of a path
from an initial position to a final position. In the context of topology, this
problem can be represented as follows: For a space X, the (free) path space

X' ={y: 1=10,1] - X}

consists of paths in X equipped with the compact-open topology. The path
fibration 7: X! — X x X is defined by n(y) = (y(0),v(1)). The motion
planning algorithm in X is a continuous section of 7, that is, a continuous
map
s: XxX - X

such that 7 o s agrees with the identity map idyxxx. For each pair (x,y) of
points (initial position x and final position y) in X, a motion planning algo-
rithm presents a path connecting x and y. The topological motion planning
problem questions whether we can construct a motion planning algorithm.

Theorem 1.1 ([Far03]). A space X admits a motion planning algorithm if
and only if X is contractible.

The above theorem indicates that motion planning algorithms cannot be
constructed globally in a non-contractible space. However, we may have
local motion planning algorithms, that is, sections of the path fibration 7 on
a subset of X X X. If we have motion planning algorithms s;: U; — X/,
i=0,---,nsuchthat Uy U U; U---U U, = X X X, arobot can move from
x to y following algorithm s; with (x,y) € U,.

Farber introduced a numerical invariant TC(X), which is one less than the

minimum number of local motion planning algorithms for robotic motion
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design in X [Far03]. However, TC(X) is not easy to compute. Indeed, the
topological complexity of a Klein bottle has been computed in recent years
[CV17, Dral7, IST19].

In this paper, we introduce a discrete method for calculating the topo-
logical complexity for finite simplicial complexes using finite T-spaces or
posets. Because a finite space has only a finite number of open sets, the
topological complexity of a finite space can be theoretically computed in
finite steps of discrete operations.

2. TOPOLOGICAL COMPLEXITY

Throughout this paper, we deal only with path-connected spaces. Let
n: X! — X x X be the path fibration defined by n(y) = (y(0),y(1)). A
motion planning algorithm on a subset U is a local section of x, i.e., a
continuous map s: U — X' such that 7 o s agrees with the inclusion U <
X xX.

Definition 2.1. For a space X, the topological complexity TC(X) is defined
as the minimum number n such that we have n + 1 open sets Uy, -+, U,
covering X X X, where each U; admits a local motion planning algorithm.
If no such number exists, we set TC(X) = oo.

The above definition adopts one less than the minimal size of open sets
covering the product space with motion planning algorithms. As another
option, we can consider arbitrarily subsets covering or separating the prod-
uct space instead of open sets.

Definition 2.2. For a space X, the generalized topological complexity TC,(X)
is defined as the minimum number 7z such that we have n+1 subsets U, - -+ , U,
such that

XxX=UulUu---uU, UnU;=0,i# ]
where each U; admits a local motion planning algorithm. If no such number
exists, we set TC,(X) = oo.
If TC(X) = n with open sets Uy, --, U, covering X X X and motion
planning algorithms s;: U; — X!, we have subsets
Vi=U; —(UyU U, U---UU;_)

in X X X. The product space X X X is decomposed by V;, and s;|y, provides
a motion planning algorithm on V;. Hence, the inequality TC,(X) < TC(X)
always holds. The converse inequality also holds for CW complexes.

Theorem 2.3 ([Gar19]). For a CW complex X, we have TC(X) = TC,(X).

We can consider the topological complexity for maps.
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Definition 2.4. Let f: ¥ — X X X be a continuous map. The topological
complexity TC(f) of f is defined as the minimum number n such that we
have n + 1 open sets Uy, --- , U, covering Y, where each U; admits a con-
tinuous map s: U; — X! withzwos = flu,. If no such number exists, we set
TC(f) = oo.

For the identity map idyxx: X X X — X X X, the topological complexity
TC(idxxx) agrees with TC(X).

Proposition 2.5 ([Far03]). The topological complexity for spaces has the
following properties:

(1) TC is a homotopy invariant, i.e., X ~ Y implies TC(X) = TC(Y).
(2) TC(X) = 0 if and only if X is contractible.

(3) cat(X) < TC(X) < cat(X X X), where cat denotes the LS-category.
(4) TC(X x Y) < TC(X) + TC(Y) for ANR spaces X, Y.

A useful cohomological lower bound for TC is well-known. A zero-
divisor of the cup product is an element in the kernel of the cup-product
U: H(X) ® H(X) — H*(X). The zero-divisor-cup-length zcl(X) is the
maximal number n of zero-divisors a, - - - , @, such that [] @; # 0in H*(X)®
H*(X).

Theorem 2.6 ([Far03]). zcl(X) < TC(X).

Example 2.7. The following are fundamental examples of topological com-
plexity.
(1) TC(S™) = {1 ifnisodd, ¢ an n-sphere S" ([Far03]).
2 if nis even,
(2) TC(T™) = n for the product 7" = [, S of circles ([Far03]).
(3) TC(By) = 2 for the wedge By = VS' of circles when k > 2
([Far04]).
(4) TC(CP") = 2n for an n-dimension complex projective space CP”
([FTYO03]).

2 ifg<l, . .
% =" fora compact orientable surface X, with
4 ifg>2,
genus g ([Far03]).
(6) TC(K) = 4 for a Klein bottle K ([CV17, Dral7, IST19]).

(5) TC(Zy) =

The calculations of topological complexity tend to be difficult. For exam-
ple, although TC(RP") = n for a real projective space RP" withn = 1,3,7,
it is difficult to find out a general formula for TC(RP"). Forn # 1,3,7,
the topological complexity TC(RP") is equal to the immersion dimension

of RP" ([FTYO03]).
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3. SIMPLICIAL COMPLEXES AND FINITE SPACES

In this section, we study combinatorial homotopy theories on simplicial
complexes and finite spaces.

3.1. Simplicial complexes. A simplicial complex K consists of the set V(K)
of vertices and the set X(K) of simplices as a subset of the power set 2"&
satisfying the following face relation:

(1) The singleton {v} is contained in X(K) for any v € V(K).

(2) If r c 0 and o € 2(K), then 7 € X(K).

This study deals only with connected finite simplicial complexes (where
V(K) is finite).

For a simplicial complex K, let |K| denote the geometric realization of
K. This space is constructed by gluing the simplices along their boundaries.
The geometric realization |K| of a finite simplicial space K with n+1 vertices
can be realized as a subcomplex of the standard n-simplex A" ¢ R"*!: For
V(K) = {vo, V1, -, v}, we identify v; with the i-th vertex of A". The space
|K] is constructed by taking the convex hull |o| of o = {v;, v, -+, v, } if
is a simplex in K.

For two simplicial complexes K and L, a simplicial map f: K — L is
a map on vertices f: V(K) — V(L) sending a simplex o of K to a sim-
plex f(o) of L. A simplicial map f: K — L induces a continuous map
|f]: |K| — |L| defined by |f|(X; t;vi) = D t:f(v;) for t; € I and v; € V(K).

3.2. Homotopy theory of simplicial complexes.

Definition 3.1 (Simplicial approximation). Let f: |K| — |L| be a continu-
ous map. A simplicial map ¢: K — L is called a simplicial approximation
to fif f(x) € |o| implies |¢|(x) € |o| for any x € |K| and o € Z(L).

The realization |g| of a simplicial approximation to f is homotopic to f
because we have a homotopy H(x, ) = t{¢|(x) + (1 — 1) f(x).

Definition 3.2. Let K be a simplicial complex. The barycentric subdivision
sd(K) consists of barycenters of (realized) simplices of K as vertices. A sim-
plex of sd(K) consists of barycenters {b,,, - - , b, } of simplices o, ,0,
satisfying oy C --- C o0,. For r > 1, the r-iterated barycentric subdivision
sd"(K) is defined inductively by sd(sd"'(K)), where sd°(K) = K.

It should be noted that |sd"(K)| = |K]| for any r > 0, which we identify.
From this viewpoint, we can choose a simplicial approximation A: sd"(K) —
K to the identity on |K|.

Theorem 3.3 (Simplicial approximation theorem ([Spa95])). Let f: |K| —
|L| be a continuous map. There exist sufficiently large r > 0 such that we
have a simplicial approximation ¢: sd"(K) — L to f.

4



Definition 3.4. Two simplicial maps f,g: K — L are called contiguous
and are denoted by f ~ g if f(o) U g(o) constitutes a simplex of L for
each simplex o of K. The contiguous relation on simplicial maps from K
to L is reflexive and symmetric, but not transitive. The equivalence relation
generated from ~ is denoted by =, i.e., f = g if we have a finite number
of simplicial maps h;,--- ,h,: K — L such that iy = f and h, = g and
h; ~ h; for each i. In this case, we say that f and g are in the same
contiguity class.

Theorem 3.5 ([Spa95]). Let f,g: |K| — |L| be homotopic maps. There
exist sufficiently large r > 0 such that we have simplicial approximations
o, . sd"(K) — Lto f and g, respectively, in the same contiguity class.

3.3. Finite spaces. In topology, spaces consisting of finite points are often
regarded as pathological examples because such spaces are discrete under
usual situations.

Proposition 3.6. Any finite T,-space must be discrete.

For example, finite subspaces in a Hausdorff' space must be discrete.
However, finite T-spaces have fascinating combinatorial structures. For
a point x in a finite Ty-space X, we have the minimal open neighborhood

Ux:mU

xeU

defined as the intersection of all open sets x € U. A partial order x < y on
X is defined as U, Cc U,.

By contrast, a poset (partially ordered set) P is equipped with a topology
called the Alexandroff topology. A subset Q C P is an open setin P if Q is
an ideal (a down-set) closed under the lower order.

From this perspective, finite Tj-spaces can be regarded as finite posets.
Throughout this paper, finite T,y-spaces are simply called finite spaces.

3.4. Homotopy theory of finite spaces. The homotopy theory of finite
spaces was developed by Strong [Sto66] and Barmak-Minian [BM12]. A
map f: P — Q between finite spaces P and Q is continuous if and only
if f is an order-preserving map. For two continuous maps f,g: P — O, a
partial order f < g on the mapping space QF is defined by f(x) < g(x) in Q
for any x € P.

Theorem 3.7 ([Sto66]). Two continuous maps f,g: P — Q between finite
spaces P and Q are homotopic if and only if we have a finite number of
continuous maps f = hy,--- ,h, = g from P to Q such that h; < h;y, or
h; > hiyq for each i.
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Definition 3.8. A point x in a finite space P is called an up beat point if
there exists a unique maximal element in P., = {y € P | y < x}. Conversely,
x is called a down beat point if there exists a unique minimal element in
P.,={ye P|y> x}. Apoint x is simply called a beat point if it is either
an up beat point or a down beat point.

For a beat point x € P, we have a deformation retraction r: P — P\{x}
defined by r(x) = y, where y is the maximal (minimal) element in P_,
(P-,). An arbitrarily deformation retraction in finite spaces is described as
removing beat points.

Definition 3.9. For a beat point x in a finite space P, we say that there is
an elementary strong collapse from P to P\{x}. For a subspace Q of P, if
there exists a finite sequence of elementary strong collapses starting in P
and ending in Q, we say that there is a strong collapse from P to Q, and use
the notation P\\\,Q.

For two finite spaces P and Q, we say that P and Q have the same strong
equivalence type if there exists a finite sequence of finite spaces

P:R()?Rla-"aRn = Q
such that R;\\\R;;; or R;.1 \\R; for each i.
Proposition 3.10 ([Sto66, BM12]). A subspace Q is a deformation retract
of a finite space P if and only if P\\\Q.
Theorem 3.11 ([Sto66, BM12]). Two finite spaces P and Q are homotopy
equivalent if and only if they have the same strong equivalence type.
Definition 3.12. A finite space is called minimal if it has no beat point.
Proposition 3.13 ([Sto66]). Let f: P — P be a map homotopic to the
identity idp. If P is minimal, then f = idp.
The above proposition implies that if two minimal finite spaces P and Q

are homotopy equivalent, then they are homeomorphic.
Definition 3.14. A subspace Q of a finite space P is called a core if it
satisfies the following two conditions:

(1) Q is minimal.

(2) Qs a deformation retract of P.

The homotopy type of finite spaces is completely classified by cores. The
core of a finite space is uniquely determined up to homeomorphism.

Theorem 3.15 ([Sto66, BM12]). Two finite spaces are homotopy equivalent
if and only if they have homeomorphic cores.

In particular, a finite space is contractible if and only if it has a single-

point core.
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3.5. Classifying space and barycentric subdivision.

Definition 3.16. Let P be a finite space. The order complex K(P) is a
simplicial complex defined as follows: The set of vertices V(K (P)) = P,
and the set of simplices £(K(P)) consists of totally ordered subsets in P:

Po<p1<:<PDn
The geometric realization |K(P)| is called the classifying space of P.

Let K be a simplicial complex. The face poset F (K) consists of all sim-
plices of K with the inclusion order.

Definition 3.17. For a finite space P, the barycentric subdivision sd(P) =
F (K (P)) is defined as the face poset of the classifying space of P. That is,
sd(P) consists of totally ordered subsets of P with the inclusion order. We
inductively define the k-iterated barycentric subdivision as follows:

sd“(P) = sd(sd“"!(P)).
For convenience, we set sd’(P) = P.

We have a natural continuous map 7p: sd(P) — P defined by 7(py <
-++ < pu) = pn. Moreover, T’;,: sd“(P) — P is defined as follows:

sd“(P) 8" sd 1 (P) —> -+ —> sd(P) =5 P,
Theorem 3.18 ([McC66]). For any finite space P, the map t: sd(P) — P
is a weak homotopy equivalence.

Theorem 3.19 ([BM12]). Let K, L be simplicial complexes, and let P, Q be
finite spaces.

(1) If two simplicial maps f,g: K — L are in the same contiguity class,
then the induced maps ¥ (f), F(g): F(K) — F (L) are homotopic.

(2) If two continuous maps f,g: P — Q are homotopic, then the in-
duced simplicial maps K(f), K(g): K(P) — K(Q) are in the same
contiguity class.

Theorem 3.20 ([BM12]). A finite space P is contractible if and only if sd(P)
is contractible.

4. TOPOLOGICAL COMPLEXITY OF SIMPLICIAL COMPLEXES AND FINITE SPACES

The topological complexity TC(X) is defined as one less than the mini-
mal number of open sets covering X X X with motion planning algorithm.
Here a motion planning algorithm is a continuous local section s: U — X'

of the path fibration. We notice that s provides a homotopy between the
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projections pr,,pr,: U — X. Hence, a subset U C X X X admits a mo-
tion planning algorithm if and only if the projections pr;,pr,: U — X are
homotopic on U.

From this perspective, Gonzalez introduced a simplicial version of topo-
logical complexity for simplicial complexes [Gon18].

4.1. Simplicial complexity. The product of simplicial complexes is not
naturally determined because the Cartesian product A" X A" of geometric
simplices is no longer a simplex. To define the Cartesian product of simpli-
cial complexes, we consider ordered simplicial complexes.

An ordered simplicial complex is a simplicial complex with a total order
on the vertices in each simplex compatible with the face relation. For an
ordered simplicial complex K, the Cartesian product K X K is a simplicial
complex with the vertex set V(K) X V(K). A binary relation on V(K) X
V(K) is defined by (v,w) < (v/,w') if and only if v < v and w < w' in
V(K). A simplex of K X K is a totally ordered subset § of V(K) X V(K)
with respect to the relation < such that m;(§) constitutes a simplex in K,
where 7; is the projection to the i-th coordinate for each i = 1,2. In this
setting, the projections r;: K X K — K become simplicial maps and induce
a homeomorphism |K X K| = |K| x |K|. We note that for any finite simplicial
complex K, we can always choose a total order on the vertices, and it makes
K an ordered simplicial complex.

Definition 4.1. Let K be a (an ordered) simplicial complex K, and r > 0
be a nonnegative integer. We say that a subcomplex L of sd"(K X K) admits
a motion planning algorithm if the two simplicial maps m; o A and 7, o
A: L — K are in the same contiguity class for a simplicial approximation
A: L —» K x K to the inclusion |L| — |K| X |K].

The simplicial complexity SC,(K) is defined as one less than the smallest
size of subcomplexes covering sd"(K x K), where each subcomplex admits
a motion planning algorithm.

It should be noted that SC,(K) does not depend on the choice of ordering
on K, and hence, the simplicial complexity is defined purely for simplicial
complexes [Gon18, Remark 3.2]. The inequality TC(|K|) < SC,(K) always
holds for any r > 0, and SC,(K) decreases as r increases:

SCo(K) > SCi(K) > --->SC(K)>--->0.
Gonzélez showed that the above monotone sequence converges to TC(|K]).
Theorem 4.2 ([Gon18)). For any simplicial complex K, the equality SC,(K) =

TC(|K]) holds for sufficiently large r > 0.
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4.2. Topological complexity for finite spaces. The reminder of this paper
is an overview of [Tan18] regarding topological complexity for finite spaces
and the classifying spaces.

The finite interval J,, of length m is a finite space consisting of m + 1
points {0, 1 -- -, m} with the zigzag order as follows:

0<1>2<3>---<(>)m.

For a finite space P, the mapping space P’/ consists of continuous (order-
preserving) maps J,, — P. This is a finite space with the partial order f < g
given by f(i) < g(i) for any i € J,,,.

An element in P/» can be regarded as a zigzag-ordered (m + 1)-tuple of
elements in P:

Po<pi2pr << (2)pm.

We have a continuous map rr,,: P’» — PxP defined by m,,(y) = (y(0), y(m)).

Definition 4.3. For a nonnegative integer m > 0 and amap f: Q - Px P
between finite spaces Q and P, TC,,(f) is defined as the minimum number
n such that we have (n + 1) open sets Uy, --- , U, covering O, where each
U; admits amap s: U; — P/» withm,, 0 5 = f] v;- In particular, TC,,(idpxp)
is denoted by TC,,(P).

We have a deformation retraction J,,;; — J,, sending m + 1 to m. This
induces a map P’» — P’ preserving both ends. This implies that if a
subset U of P X P admits an m-length motion planning algorithm, then U
also admits an (m + 1)-length motion planning algorithm.

Proposition 4.4. For amap f: Q — P X P, we have TC,,(f) > TC,,.,1(f).

Theorem 4.5. Foramap f: Q — P X P, we have the following decreasing

sequence.
TCo(f) = TCi(f)=--->0

and
lim TC,,(f) = TC(f).

4.3. Topological complexity for the classifying space. We focus on the
relationship between TC(|K P|) and TC(P) for a finite space P. The follow-
ing inequality always holds.

Proposition 4.6. For a finite space P, we have TC(P) > TC(|'KP)).

Example 4.7. Let B, be a finite space consisting of (n+3)-points {a, b, cg, - - -
for n > 1. The partial order on B, is given by a < ¢; and b < ¢; for
each 0 < i < n. The space |K(8B,)| is a bouquet with n circles. Hence,
TC(K(B,)|) = 1 forn = 1 and TC(|K(B,)|) = 2 for n > 2, whereas
TC(B,) = (n+1)* - 1.
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In the above example, the difference between TC(P) and TC(|K P|) can
be significantly large, depending on n. This results from a small number of
open sets of P X P compared with |K(P)| X |[K(P)|. One of the ideas to fill
the gap between them is to consider the barycentric subdivisions.

Example 4.8. Consider 8, in Example 4.7. This is a finite-space model of
acircle. The barycentric subdivision sd($;) consists of eight points, and we
have

TC(sd(8B)) < cat(sd(B;) x sd(B;)) =2 < TC(8B,) = 3.

The above example provides a case of strict inequality TC(P) > TC(sd(P)).
We expect that TC(sd*(P)) will decrease and converge to TC(|KP|) as k —
co. However, this is not true in general.

Example 4.9. Let ‘W be a finite space described as the following Hasse

P ]
K%

W is not contractible because it has no beat point, whereas the classify-
ing space |K(W)| is contractible. We have TC(|K(‘W)|) = 0, whereas
TC(sd*(‘W)) > 0 for any k > 0 by Theorem 3.20.

The topological complexity TC(sd(P)) is based on open sets in the prod-
uct sd(P)x sd(P). However, the product sd(P)xsd(P) is not described as the
face poset of a simplicial complex in general. This is a disadvantage in that
we cannot use the combinatorial homotopy theory of simplicial complexes,
including the simplicial approximation theorem.

We use sd(P X P), which is the face poset of the order complex K(P X P),
instead of sd(P) X sd(P). Let us recall the natural map defined in Section
3.5:

75 pi sd(P X P) — P X P.

The following is our main result in [Tan18]. The proof is essentially

based on the simplicial approximation theorem (Theorems 3.3 and 3.5).

Theorem 4.10. Let P be a finite space. We have the following monotone
decreasing sequence

TC(P) = TC(tpyp) 2 TC(Tpyp) 2 +++ 2 0

and
]}1_%10 TC(T];)X})) = SC(KP) = TC(KP)).
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