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Abstract

The characteristic geometric structures found in disordered matters are discussed from the view-
point of general topology. Cantor cube which is a topological space consisting of the infinite
product space of 0 and 1 provides specific decomposition spaces representing topologically geo-
metric patterns of matters such as graphs, clusterized structures, dendrites.

1 Introduction: Cantor cube model

Geometrically patterns of matters in solid and liquid states have been hugely studied from the
viewpoint of disordered physics[l, 2]. In particular, fascinating characteristic topology struc-
tures of matters (the topology structures of matters is abbreviated as TSM hereafter), such as
the graphic structure of polymers[3], the clusterized structure of molecular liquids[4, 5], or the
dendritic structure in solidifications[6], have been found. To characterize such TSM, several
mathematical methods based on topological concept have been studied. For instance, persis-
tent homology is the method available for classification of geometric structures of amorphous
materials[7, 8]. Note that this persistent homological analysis is mathematically based on a
technique of algebraic topology.

The mathematical approach by using general topology to TSM has been successfully studied[9,
10, 11, 12]. In these studies, TSM are investigated based on the mathematical formation of a set
of equivalence classes for a specific topological space X, independently of the detailed properties
of each matter. That is, geometric patterns for TSM are discussed by connecting them with the
decomposition spaces of X (For the details of this approach, see [12]). In the present article, we
focus on characterizations of TSM by means of the Cantor cube model; in this model the specific
topological space X is taken as a Cantor cube ({0, 1}A, 7'6\) and geometric patterns are discussed
through the decomposition spaces of ({0, 1}, Té\), where ({0,1}4, T(‘)/\) is the A—product space
of ({0,1},79) with an index set A of Card A > Ry and 7 is a discrete topology for {0,1}.
To begin with, we will show a practical construction of a decomposition space of ({0, 1}*, )
homeomorphic to a compact metric space.

It is very known that any compact metric space is represented homeomorphically as a quotient
space of fibers [13] of 0-dim, perfect, compact Hausdorff-space[14]. Indeed, the representation
of a compact metric space can be obtained systematically as follows. Let X denote a Cantor
cube ({0, 1}A, 7)) with Card A > Ry, and let Y be a compact metric space. Then, there exists
a closed cover {Y1,...,Y,} (n < 00) of Y, each diameter of which is less than 1/2. To this cover
there corresponds a partition {X71,..., X, } of {0,1}" such that

X1 = {0}, x {0, 1}A-{d
Xi= {1}/\1 X X {1})\171 X {0})\1 X {Oa 1}A_{)\17m’>\i} (Z = 2’3) cee, = 1)’ (1)
X ={1}hx, x - x {1}a, , x {1}, x {0, 1A Annd

where \; is arbitrarily element of A, (i = 1,...,n — 1) and each {ki}x, x -+ x {ki}a, X
{0, 1At = £ 0 A — {0,1},2(N) = k; € {0,1},1 = 1,...,4} stands for a cone. Let
s1: X = X(Y) — {g} be a map defined by s;(x) =Y if x € X; for each i, where J(Y') is the
collection of closed sets of Y. Note that Y = U,cxs1(x). Since Y; is a compact metric space,



for each 4, we have a closed cover {Y;,,...,Y; } of ¥;, each diameter of Y;, being less than 1/ 22,
Also, X; has a partition {X;,,..., X;, } composed of cones such that

Xil = {1}>\1 X X {1}&‘71 X {0})\1 X {O}Hl X {0’ 1}A_({)\17...7>\i}U{M1})’

Xi]- = {1}>\1 X X {1})\171 X {0}/\1 X {1}H1 X X {]‘}Hj—l X {O}Hj X {0’ 1}A._({>\17~-~7Ai})u({/~l/1,--~,ua})
(1 =2,3,...,n; — 1),

2)
where p; is arbitrarily element of A — ({A1,...,A\i}). Let s2 : X — (YY) — {8} be defined by
so(xz) =Y, for x € X;,. Then, Y = Uzexsa(x) and sy(x) C si(x) for all z. Continuing the
procedure we have a sequence of functions {s,} such that for each = and for each n, (i) s, is
upper semi-continuous, (ii) $p4+1(z) C sp(z), (iii)) Y = Ugexsn(z), and (iv) dia s,(z) — 0 as
n — 0o, where dia stands for diameter of a set. Thus, we obtain a continuous map f from X onto
Y,  — Npgn(z) and the decomposition space (Dy,7(Dy)) of X relative to f homeomorphic to
Y, where Dy = {f1(y);y € Y} and 7(Dy) = {U C Dy; JU € 7'} is a decomposition topology.
Through the homeomorphism, each point y of Y can be associated with an unique point f~!(y)
of Dy. For instance, the decomposition space representing [0,1] is obtained practically as the
following two cases; letting M = {l/2";n = 1,2,... and [ = 1,...,2" — 1}, then (i) for y =
N a;/2 ¢ M

F7 ) = {aada, x fazh, x - x {0, 1Al (3)

and (ii) fory =1/2" € M

Fy) = [{al}xl X {agha, X - X {an—a}a, ., X {0}a, < {1}, X {1}, x - x {0, 1}"*“1“2*“}]
U{arha % faabn x - {an1 X {1, < {0ha, X {0ha X -0 x {0,173 )

for some ay,...,a,_1. Here, f~1(0) = {0}, x {0}x, X -+ x {0,1}A~ P22} and f-1(1) =
{1}a, x {1}y, X --- x {0,1}A~1A 22} Note that the decomposition space constructed in the
above process is not unique.

2 Topologically representation for TSM

Here, we focus on several decomposition spaces of the Cantor cube X = ({0,1}*,7/') which
represent geometric models for TSM.

First let us consider two network patterns Y7 and Y; shown in (a) and (b) of Fig. 1; Y7 is
a figure composed of three nodes ey, es,a and two bonds Fy and Fs connecting e; with a and
eo with a, respectively. Y, is a finite graph[15]. Since Y; is regarded as an arc, the construction
of the decomposition space stated in the previous section for Y = [0, 1] can be directly applied
to Y1. Indeed, letting h be a homeomorphism from Y; onto [0, 1], each point = of ¥; can be
represented as the point of a decomposition space D; of {0,1}* by the following two types; (i)
if h(z) ¢ M(={l/2"n=1,2,... andl =1,...,2" — 1}), then

x = {kl}h X {kQ})\z X X {Oa 1}A—{)\1,/\2,...}’ (5)

where ki, ko, ... are points in {0,1} satisfying h(z) = X2, k; /2%, and = is the sign of identifica-
tion of z with a corresponding point f~!(x) of Dy, and (ii) if h(x) € M, then

T = [{kl}xl X {kata, < - X {kmba, X {0hx, 0 X {1}a, 0 X {1ha,, X - x {0, 1}A_{A1’A2"”}}

U[{kl}AI X ko, X X {hmda, X {1a 0 X {0, X {0}a,, X -0 X {0,1}A*{*17A2f"}} (6)



for some m, where ki, ...,k are points in {0, 1} giving h(z) € M. If we introduce a sign S,
defined by

_ [ B), hz)gM
Sz = { 6), h(z) € M, @

then

x =25, (8)
for x € Y7. Note that assuming h(e;) = 0 and h(ez) = 1, the end points e; and ey form
er = {0}, x {0}n, x -+ x {0, 1A e} ey = (11 % {1}y, x - x {0, 1A A ()

The relation (8) shows that the geometric feature of Y; is completely characterized in the de-
composition space D; of X. For a finite graph Y,, we denote the arcs composing of Y, by
FE1,...,E.(r < 00). There exists a partition {X! ..., X"} of X corresponding to these arcs

where each X' is defined as well as that in (1) with indexes j1,...,p, 1 € A. It is confirmed
that a decomposition space D, of X represents Y;; the representations for a node x with bonds
Ei,, ..., Ey, and a point y in a bond E; are obtained as

z=U_ (X NSY), y=X'NS, (10)

respectively. As a practical example of materials with the graphic structure we can consider a
tree of a dendritic crystal[16]. A tree is a graph that does not contains a space homeomorphic to
a unit sphere shown in (c¢) of Fig. 1. In this case, the representation for a tree by a decomposition
space D, is the same as the relation (10).

€

(a) (b) (c)

Figure 1: Schematic explanation of three types of geometric patterns with network configuration. (a
geometric model Y7; two nodes e; and ey are connected by edges E; and Es thorough a node a. (b) a
finite graph Y. (c) a tree Y.

Next, we focus on a cluster pattern Y. for which each cluster is a finite graph, shown in
Fig. 2 (a). Then, Y. may be defined to be a topological space (@;_; Ci,@D;_, 7:) where
(D;_, Ci,P;_, i) is a disjoint union of a collection of finite graphs {(C;,7;),i =1,...,s}. To
disjoint clusters C1, ..., Cs, there corresponds a partition {Ji,...,Js} of X using new elements
&1,...,&1 € A such that

Jio= {0}, x {0, 1}A {6,
Jj = {1}51 X oo X {1}51__1 X {0}5]_ X {07 1}/\—{51,---5]-_1} (j — 27 S — 1)7 (11)
Js = {1}51 X oo X {1}55—2 X {1}55—1 X {O, 1}/\—{51,"-55_1}'

By applying the relation (10) to each finite graph C; for corresponding cone J;,i = 1,..., s, the
representation of whole space Y, by a decomposition space D, of X can be obtained as follows;
for x € Y. contained in a cluster Cj,,

. Ul (X5 N SY)
= J, N4 =1\ ’ 12
T= {Wﬁ%. (12)



The relation (12) shows that x is either a node of C;, with bonds E;f, . ,Etls or a point in a
bond E where EI°, ... ’Ei(éz‘o) (tq < r(ip)) are arcs composing of a finite graph C;,. Namely,
the term J;, and the successive terms designate a point x belonging to a graphic cluster C;, and
a location of z in the graph Cj,, respectively .

This topologically representation by a decomposition space D, for a clusterized structure can
be applied to the tiling issue in material science that a polycrystal can be filled with an arbitrary
finite number of single crystals characterized by a specific geometric structure, i.e., dendritic, or
self-similar structure (according to the mathematical setting and discussion for the issue based
on general topology, see [11]). Figure 2 (b) shows the roughly sketch of situation for this issue.
Here, we consider dendritic crystals as single crystals. Then, the situation can be identified with
the clusterized geometrical pattern in which each cluster is dendritic. Actually, we regard each
dendritic crystal composing of the polycrystal as a cluster and then the geometric structure
of the polycrystal is described by a kind of clusterized structure. Based on the representation
(12) of the clusterized structure, we can obtain the following decomposition space D. of X
representing the geometric structure of the polycrystal:

D. = U D;, (13)
where
D; = {y = J;NUIL_ (X" NSy)ye Yj} U {y =LiNX'NShye Y;}. (14)

Note that D;, i = 1,--- ,i are mutually disjoint each other. (13) and (14) show the relationship
between each single dendritic crystal D; and a whole polycrystal D, for the tiling issue. The
representation of decomposition spaces for the clusterized structure stated in this section can be
widely applicable to discuss geometric aggregation structures of matters such as noncrystalline
and amorphous as well as this tiling issue for a polycrystal.
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Figure 2: Geometric models of (a) a clusterized structure Y, where the number of clusters s = 3, and (b)
schematic explanations of a polycrystal Z filled with dendritic decomposition spaces D;.

Finally, we comment that in this short article a Cantor cube is introduced as a conceptional
model to obtain several topologically representations of TSM, e.g., the graphic and clusterized
structures. Indeed, each character of these geometric structures can be connected with decom-
position spaces of a Cantor cube. Therefore, by analyzing a mathematical property of a Cantor
cube model even more, new universal properties of the geometric structures of matters might
be revealed.

3 Conclusion

The mathematical method to characterize geometric patterns for TSM universally based on a
Cantor cube ({0, 1}A,7'é\) has been shown. Typical geometric patterns such as graphic and



clusterized structures are focused on and their representations by decomposition spaces of the
Cantor cube are investigated. A practical form of a decomposition space of a polycrystal in
the tiling issue that a polycrystal filled with an arbitrary finite number of dendritic crystals is
shown by handling it as a special case of the decomposition representation for the clusterized
structural geometric model. (More details are shown in [12].)
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