Asymptotic behavior of the resolvents of equilibrium
problems in complete geodesic spaces
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Abstract

Equilibrium problems are one of the important problems which are applied
in a variety of fields such as natural science, economics, statistics and so on.
The idea of the resolvent are considerable notion to solve these problems and
has been studied by many researchers. In this paper, we consider the problem
of asymptotic behavior of resolvents defined for equilibrium problems.

1 Introduction

The concept of resolvent has been deeply studied and applied for solving convex
minimization problems and fixed point problems in various settings of spaces. A
geodesic space is a metric space having a convex structure and a Hadamard space
is one of complete geodesic spaces in which resolvents are considered. For a convex
function on a Hadamard space, its resolvent is often defined as follows. Let X be a
Hadamard space and g a convex lower semicontinuous function on X. We define a
resolvent R,: X — X by

Ry(a) = arygelgl(in{f (y) + d(y,a)*}



for a € X. This R, is well-defined as a single valued mapping; see [4]. Therefore, we
can consider a resolvent R, with positive parameter A. That is,

. ) 1
Ry f0) = agmin(AF(3) + d(y. o} = anganin { 73) + Jly.0)* |
yeX yeX
The asymptotic behavior of resolvent at infinity is a problem to consider the limit
of Rygx at A — 00. As for this problem, the following result is known.

Theorem 1.1 (See [1]). Let X be a Hadamard space, g a convez lower semicontinuous
function on X, x € X, and A > 0. Define Ry,: X — X by

) 1
Ry () = axgmin { £) + .o

for each a € X. If there exists a sequence {j,} such that p, — oo and {J,, s} is
bounded, then argmin f # () and,

lim Jyrx = Prquil £2.
Amroo "M Equil f

Equilibrium problems are important problems containing minimization problems,
fixed point problems, saddle point problems, and Nash equilibria. Let K be a
nonempty set and f: K x K — R a bifunction on K. An equilibrium problem
for f is a problem of finding

z € K such that f(z,y) >0 for all y € K.
These problems are studied by many researchers. For example, see [2]. We consider a
resolvent for such a bifunction f of equilibrium problems. A resolvent of equilibrium
problems on Hadamard spaces is defined in [3].

In this paper, we study the property of a resolvent of equilibrium problems with
a positive parameter A and consider the asymptotic behavior of its resolvent at \ to
infinity.

2 Preliminaries

Let X be a metric space. For z,y € X, a geodesic ¢zyy: [0,d(z,y)] — X is a
mapping which satisfies ¢, (0) = z, czy(d(z,y)) = vy, and d(czy(u), czy(v)) = Ju — v
for u,v € [0,d(z,y)]. If for any two points, there exists a unique geodesic, X is called
a uniquely geodesic space. We define convex combination tx @ (1 —t)y between x and
y in a unique geodesic by

tx (1 — t)y = ny(<1 - t)d<x7 y)),

for t € [0,1]. In particular, we denote %:c P %y by %71. A complete uniquely geodesic
space X is called a Hadamard space if it holds that

d(tz @ (1 —t)y, 2)? < td(z,2)? + (1 —t)d(y, 2)* — t(1 — t)d(y, 2)*
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for any three point x,y,z € X, and t € [0,1]. Let S be a subset of X. The convex
hull co .S of S is defined by

coS = [OJ S,
j=1

where S; = S and S;11 = {tro(1—-t)y € X | z,y € S;,t € [0,1]}. We say X
has the convex hull finite property if for every subset S and continuous mapping
T:coS — coS, T has a fixed point in co S.

Let X be a Hadamard space and g a function from X to R. g is said to be lower
semicontinuous if it satisfies

g(z) < liminf g(z,)
n— oo

for all x € X and sequences {z,} of X with x,, — z. Further, g is said to be convex
if it satisfies

gtz ® (1 —t)y) <tg(z)+ (1 —t)g(y)

for z,y € X and ¢t € [0,1]. Moreover, ¢ is said to be upper hemicontinuous if it
satisfies

limsup g(tx ® (1 —t)y) < g(y).

t—0
for z,y € X. Let C be a closed convex subset of X. Then, for each x € X, there
exists a unique point xy € C' such that
d(zg,x) = inf d(y, x).
(zo, ) e (y, )

We define the metric projection Po: X — C' by

Pc(a) = argmind(y, a)
yeCl
for a € X.
Let X be a Hadamard space, K a closed convex subset of X, and f a bifunction

from K x K to R. For this f, we denote the set of solution of equilibrium problems
by Equil f. That is,

Equil f = {zGK

Inf f(z,y) 2 O}.

In what follows, we assume f satisfies the following four conditions.

(E1) f(xz,z) =0 for all x € K

(E2) f(z,y) + f(y,z) <0 for all 2,y € K;

(E3) f(x,): K — R is convex and lower semicontinuous for all z € K;
(E4) f(-,z): K — R is upper hemicontinuous for all z € K.



If f satisfies these conditions, for x € X, the function f,: K Xx K — R which is defined
by
fm(zay) = f(Z,y) + d(y,ﬂj‘)2 - d(Z,ZE‘)2

is also satisfies (E1)—(E4). We denote the set of solutions of equilibrium problems for
fz by Jyx. That is

Jrx = Equil f, = {z eK

B (F) + dlya)? = dera)?) 2 0},

If X has the convex hull finite property, then Jyz is a singleton; see [3]. Therefore, we
can consider J; as a mapping from X to K. We call such a mapping J¢ a resolvent
of equilibrium problems for f.

3  Main result

Let X be a Hadamard space which has the convex hull finite property and f a bi-
function on K satisfying (E1)—(E4). For a positive parameter A, we define a resolvent
Js as follows;

Jas(a) = K
)\f(a) {ZG sk

inf <f(z,y) + ; (d(y, a)® — d(z,a)2)> > o} .

We consider the asymptotic behavior of a resolvent Jy; at A to infinity.
We first show the following lemma.

Lemma 3.1. Let £: R — R be an increasing function. If for some sequence {p,} C R
diverging to oo, {&(pn)} is bounded, then {£(A\,)} is bounded for any sequence {\,} C
R diverging to oc.

Proof. Let {\,}, {un} be real sequences such that A\,,u, — oo and £: R — R an

increasing function. Suppose {&(p,,)} is bounded and {£()\,,)} not. Then there exists
M >0,

E(pn) < M.

for all n € N and we can find a subsequence {\,,} of {\,} such that
§(An;) > M.

for all i+ € N. Then there exists k¥ € N such that \,,, < ug. Since £ is increasing, we
have
M < 5()\111> < S(Hl) < M.

This is a contradiction and it completes the proof. Ol

By using this lemma, we get a result about asymptotic behavior of an equilibrium
problems as follows.



Theorem 3.1. Let X be a Hadamard space having the convex hull finite property,
K a closed convex subset of X, x € X, and X > 0. Suppose f: K x K — R satisfies
(E1)-(E4). Define Jys: X — K by

inf (f(z,y) + % (d(y,a)® — d(z, a)2)> > 0}

Jrra = e K
A {Z yeK

for each a € X. If there exists a sequence {un} such that p, — oo and {J,, rx} is
bounded, then Equil f # 0 and,

lim J = Prqui
)\1_{20 AfT Equil fT

Proof. Let x € X and {)\,} a positive increasing sequence diverging to co. We put
xy, = Jx, sz for each n € N and suppose n, m € N satisfy n < m. Assume that there
exists a sequence {u,} such that pu, — oo and {J,, sz} is bounded. Then {xz,} is
bounded from Lemma 3.1. First, we show d(z,,z) < d(zm, ), f(Tn,Tm) < 0 and
f(xm, xy,) > 0. From the definition of the resolvent, it holds that

0 < (2, ) + % {d(xm, 2)* = d(wn, )}

n

and
1

0< my4n N
< f(omoin) + 1

{d(zn,2)* — d(2pm,2)?} .
From these inequalities and (E2), we have

0< f(xn,2m) + f(Tn,Tm) + (/\_171 - ﬁ) {d(zm, 2)* — d(z,,2)*}

< (510 (e ~ dan,a)

n
Since ﬁ — /\Lm > 0 from the monotonicity of {\,}, we get
0 < d(zm,z)? — d(z,,1)?,

which is equivalent to d(z,,z) < d(x,,,z). By the monotonicity of {d(x,,z)} and
(E2), we have



Hence, we get f(zm,x,) <0 and f(x,,xm) > 0. Next, we show

d(z,,x) <d <W+xm,x) :

From (E3) and (E1), we have

ZTn © T 1 Tn @ T\’ 2
< - - - - —
o< f (xn, 5 ) + N {d( 5 ,93) d(zy, ) }

- 2 An

. 2
= 1f(asn,xm) + )\L {d (W%,x) - d(azn,x)2} :

o S@n ) + f@nzm) | 1 {d <m,x>2 —d(;cn,x)z}

2

Similarly, it holds that

1 1 Tpn D T 2 9
<= — n 2 om - .
0< 2f(:z:m,:cn) + N {d< 5 ,:z:) d(Tpm, ) }

From these inequalities and (E2), we obtain

0. 5 fns ) + 5 (s 0)

L
An
N
An

(
(5

2 2
D B L 2R O Y K I 2
{d( 5 ,93) d(zp,x) }+ o {d( 5 ,x) d(Tpm, ) }

2
nDTm 1 1
_) (%x) b d 2

2

_) |
A—){ (WT@””;C) —d(xn,:z:)Q}

2
(mx) - L don,a)? - L d(wn.0?

since d(x,,, ) < d(xm, ). Thus, we get

d(zn,x) <d <W%,x) )

Then, we show the sequence {x,} is convergent. Using the parallelogram law, we

have

2
d(z,,x)* <d (m%,x)
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1 1
< d(:z:n,x)2 + —d(:z:m,x)2 — Zd(xn,a:m)Q,

2

and this implies d(z,,, 7,,)? < 2{d(2,,7)? —d(z,,z)*}. Therefore, since {d(x,, )} is
bounded and increasing, {z,} is a Cauchy sequence on K. Since K is a closed subset
of complete metric space X, {x,} converges to some point ¢ € K. Finally, we show
q = Pgquil - From the lower semicontinuity of f for the second argument,

N | —

lim sup(—f(y, z,)) < —hnﬂiio%ff(y,xn) < —f(y,q)

n—oo

for all y € K. From (E2), we have
1
0< fwny) + 5 {d o) —dln.)?}

<~ fwaa)+ 5 {d o) - (om0}

Since {d(z,,x)} is bounded, letting n — oo, we obtain

0 < limsup(—f(y,z,)) < —f(y,q)

n—oo

for all y € K. Let w € K and t € |0,1[. Since f is lower semicontinuous for the
second argument and K is convex, we have

0=f(twa (1 —t)g,tw e (1 —t)q)
<tf(twd (1 -t)q,w) + (1 —t)ftw o (1 —t)g,q)
<tf(twd (1 —t)q,w).

Dividing by t and letting ¢ — 0, we obtain

0 < limsup f(z¢,w) < f(q,w)
t—0

for all w € K from (E4). Therefore, we know

q € Equil f # 0.

For all z € Equil f, we have

0< flan,2)+ % {d(z,z)* — d(zn,2)*}

1 2 2
< o {d(z,2)* — d(zn,2)*}

from the definition of the resolvent. This implies d(z,,z) < d(z,z). By the lower
semicontinuity of the distance function, we get

d(q,z) < liminfd(z,,z) < d(z,z)

n—oo
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for all z € Equil f, which is equivalent to ¢ = Pgquil -
Since Jy, f& — Ppquil 2 for every positive increasing sequence {\,, } which diverges
to infinity, we conclude
)\li—{%o J,\f:c = PEquﬂf.CC.

This is the desired result. O
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